1,4-Cineole
(Synonyms: 1,4-桉叶素) 目录号 : GC387261,4-Cineole (Isocineole) is a widely distributed, natural, oxygenated monoterpene. 1,4-Cineole, present in eucalyptus oil, activates both human TRPM8 and human TRPA1.
Cas No.:470-67-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >97.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
1,4-Cineole (Isocineole) is a widely distributed, natural, oxygenated monoterpene. 1,4-Cineole, present in eucalyptus oil, activates both human TRPM8 and human TRPA1.
Cas No. | 470-67-7 | SDF | |
别名 | 1,4-桉叶素 | ||
Canonical SMILES | CC(C12CCC(O2)(C)CC1)C | ||
分子式 | C10H18O | 分子量 | 154.25 |
溶解度 | DMSO: 125 mg/mL (810.37 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 6.483 mL | 32.4149 mL | 64.8298 mL |
5 mM | 1.2966 mL | 6.483 mL | 12.966 mL |
10 mM | 0.6483 mL | 3.2415 mL | 6.483 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Selective hydroxylation of 1,8- and 1,4-Cineole using bacterial P450 variants
Arch Biochem Biophys 2019 Mar 15;663:54-63.PMID:30590022DOI:10.1016/j.abb.2018.12.025.
This study has evaluated the use of the P450 metalloenzymes CYP176A1, CYP101A1 and CYP102A1, together with engineered protein variants of CYP101A1 and CYP102A1, to alter the regioselectivity of 1,8- and 1,4-Cineole hydroxylation. CYP176A1 was less selective for 1,4-Cineole oxidation when compared to its preferred substrate, 1,8-cineole. The CYP102A1 variants significantly improved the activity over the WT enzyme for oxidation of 1,4- and 1,8-cineole. The CYP102A1 R47L/Y51F/A74G/F87V/L188Q mutant generated predominantly (1S)-6α-hydroxy-1,8-cineole (78% e.e.) from 1,8-cineole. Oxidation of 1,4-Cineole by the CYP102A1 R47L/Y51F/F87A/I401P variant generated the 3α product in >90% yield. WT CYP101A1 formed a mixture metabolites with 1,8-cineole and very little product was generated with 1,4-Cineole. In contrast the F87W/Y96F/L244A/V247L and F87W/Y96F/L244A variants of CYP101A1 favoured formation of 5α-hydroxy-1,8-cineole (>88%, 1S 86% e.e.) while the F87V/Y96F/L244A variant generated (1S)-6α-hydroxy-1,8-cineole in excess (90% regioselective, >99% e.e.). The CYP101A1 F87W/Y96F/L244A/V247L and F87W/Y96F/L244A mutants improved the oxidation of 1,4-Cineole generating an excess of the 3α metabolite (1S > 99% e.e. with the latter). The CYP101A1 F87L/Y96F variant also improved the oxidation of this substrate but shifted the site of oxidation to the isopropyl group, (8-hydroxy-1,4-cineole). When this 8-hydroxy metabolite was generated in significant quantities desaturation of C8C9 to the corresponding alkene was also detected.
1,8- and 1,4-Cineole enhance spontaneous excitatory transmission by activating different types of transient receptor potential channels in the rat spinal substantia gelatinosa
J Neurochem 2016 Feb;136(4):764-777.PMID:26578070DOI:10.1111/jnc.13433.
Although transient receptor potential (TRP) channels expressed in the spinal substantia gelatinosa play a role in modulating nociceptive transmission, their properties have not been fully examined yet. In order to address this issue, the effects of 1,8-cineole and its stereoisomer 1,4-Cineole on excitatory transmission were examined by applying the whole-cell patch-clamp technique to substantia gelatinosa neurons in adult rat spinal cord slices. Miniature excitatory postsynaptic current frequency was increased by 1,8- and 1,4-Cineole. The cineole activities were repeated and resistant to voltage-gated Na+ -channel blocker tetrodotoxin. The 1,8-cineole activity was inhibited by TRP ankyrin-1 (TRPA1) antagonists (HC-030031 and mecamylamine) but not TRP vanilloid-1 (TRPV1) antagonists (capsazepine and SB-366791), whereas the 1,4-Cineole activity was depressed by the TRPV1 but not TRPA1 antagonists. Although 1,8- and 1,4-Cineole reportedly activate TRP melastatin-8 (TRPM8) channels, their activities were unaffected by TRPM8 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide. Monosynaptically evoked C-fiber, but not Aδ-fiber excitatory postsynaptic current amplitude, was reduced by 1,8- and 1,4-Cineole. These results indicate that 1,8- and 1,4-Cineole increase spontaneous l-glutamate release from nerve terminals by activating TRPA1 and TRPV1 channels, respectively, while inhibiting C-fiber but not Aδ-fiber evoked l-glutamate release. This difference between 1,8- and 1,4-Cineole may serve to know the properties of TRP channels located in the central terminals of primary-afferent neurons. The spinal dorsal horn lamina II (substantia gelatinosa; SG) plays a pivotal role in regulating nociceptive transmission from the periphery. We found out in the SG that 1,4- and 1,8-cineole activate TRPV1 and TRPA1 channels, respectively, located in primary-afferent, possibly C-fiber, central terminals. This difference may serve to know the properties of TRP channels expressed in the central terminals.
Inhalation Administration of the Bicyclic Ethers 1,8- and 1,4-Cineole Prevent Anxiety and Depressive-Like Behaviours in Mice
Molecules 2020 Apr 18;25(8):1884.PMID:32325759DOI:10.3390/molecules25081884.
The anxiolytic and antidepressant-like activities of the naturally occurring monoterpene 1,8-cineole and its structural isomer 1,4-Cineole were evaluated in mice via inhalation administration at doses ranging from 4 × 10-6 to 4 × 10-1 mg per 400 μL of triethyl citrate. Mice were tested for anxiety-like behaviours by using the light-dark box test (LDB) and marble-burying test (MBT) and for depression-like symptoms by using the forced swimming test (FST) and tail suspension test (TST). Diazepam and fluoxetine were used as standard drugs for anxiolytic and antidepressant tests, respectively. The results showed that 1,8-cineole at 4 × 10-4 mg, and 1,4-Cineole at 4 × 10-4 and 4 × 10-3 mg significantly increased the amount of time spent in the light box and the number of entries in the light box in the LDB as well as reduced the number of marbles buried in the MBT relative to those in the control, suggesting an anxiolytic effect. Similarly, 1,8-cineole at 4 × 10-4 and 4 × 10-2 mg and 1,4-Cineole at doses of 4 × 10-4 to 4 × 10-2 mg significantly reduced immobility times in the FST and TST relative to those of the control, suggesting an antidepressant activity. The role of the GABAA/benzodiazepine receptor system in the anxiolytic effects of 1,8- and 1,4-Cineole was investigated through co-administration of flumazenil, a GABAergic system antagonist. Flumazenil reversed the effects of diazepam and 1,8-cineole, suggesting that 1,8-cineole affects the GABAA/benzodiazepine receptors. Collectively, the results suggest that inhaled 1,8- and 1,4-Cineole prevented anxiety and depressive-like symptoms in classic mice models.
Biotransformation of 1,4-Cineole, a monoterpene ether
Xenobiotica 1988 Oct;18(10):1129-34.PMID:3242309DOI:10.3109/00498258809042235.
1. The metabolism of 1,4-Cineole, a monoterpene ether, was studied in the rabbit. 2. Four neutral and one acidic metabolites were isolated from the urine and shown to be 9-hydroxy-1,4-cineole, 3,8-dihydroxy-1,4-cineole, 8,9-dihydroxy-1,4-cineole, 1,4-cineole-8-en-9-ol and 1,4-cineole-9-carboxylic acid.
Anxiolytic-like effect of the monoterpene 1,4-Cineole in mice
Pharmacol Biochem Behav 2010 Sep;96(3):287-93.PMID:20670917DOI:10.1016/j.pbb.2010.05.019.
Recent studies have shown that some monoterpenes exert anxiolytic- and depressant-like actions, however, these effects from monoterpene 1,4-Cineole are still unknown. This work aimed to study the effects of 1,4-Cineole in classic animal models for depression- and anxiety-like behavior, specifically the elevated plus maze (EPM), hole board, open field, pentobarbital sleeping time, forced swimming, tail suspension and rota rod tests. 1,4-Cineole was administered orally to mice (100, 200 and 400 mg/kg), while diazepam (1 or 2 mg/kg) and imipramine (10 or 30 mg/kg) were used as standard drugs. 1,4-Cineole (400 mg/kg) modified all parameters observed in the EPM, while no significant variation was observed on general motor activity in the open-field test. In the hole-board assay, 1,4-Cineole induced increase on the number of head dips. Forced swimming and tail suspension tests showed that cineole (200 and/or 400 mg/kg) was able to promote significant increase on the immobility time, while a decreased sleep latency was observed (200 and 400 mg/kg ) on the pentobarbital sleeping time. Cineole had no effect on the motor coordination of animals in the rota rod test. The results suggest that 1,4-Cineole presents potential anxiolytic-like action consistent with possible general depression of the CNS.