Home>>Infectious Disease>> Bacterial Diseases>> Food-Borne Illnesses>>1-Decanoyl-rac-glycerol

1-Decanoyl-rac-glycerol Sale

(Synonyms: 一癸酸甘油酯) 目录号 : GC41990

A monoacylglycerol

1-Decanoyl-rac-glycerol Chemical Structure

Cas No.:2277-23-8

规格 价格 库存 购买数量
50mg
¥496.00
现货
100mg
¥891.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

1-Decanoyl-rac-glycerol is a monoacylglycerol that contains decanoic acid at the sn-1 position. It inhibits the growth of B. cereus, S. typhimurium, and E. coli when used at a concentration of 1 mg/ml and S. aureus when used at a concentration of 0.5 mg/ml. 1-Decanoyl-rac-glycerol is an agonist of transient receptor potential vanilloid 1 (TRPV1) that induces calcium influx in HEK293 cells expressing the human receptor (EC50 = 12.6 μM). It is an emulsifying agent and has been used to increase the storage stability of mayonnaise and viscoelasticity of processed cheese.

Chemical Properties

Cas No. 2277-23-8 SDF
别名 一癸酸甘油酯
Canonical SMILES OCC(O)COC(CCCCCCCCC)=O
分子式 C13H26O4 分子量 246.3
溶解度 Chloroform: soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.0601 mL 20.3004 mL 40.6009 mL
5 mM 0.812 mL 4.0601 mL 8.1202 mL
10 mM 0.406 mL 2.03 mL 4.0601 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Novel LC/MS/MS and High-Throughput Mass Spectrometric Assays for Monoacylglycerol Acyltransferase Inhibitors

SLAS Discov 2017 Apr;22(4):433-439.PMID:28328322DOI:10.1177/2472555217690101.

Monoacylglycerol acyltransferase enzymes (MGAT1, MGAT2, and MGAT3) convert monoacylglycerol to diacylglycerol (DAG). MGAT1 and MGAT2 are both implicated in obesity-related metabolic diseases. Conventional MGAT enzyme assays use radioactive substrates, wherein the product of the MGAT-catalyzed reaction is usually resolved by time-consuming thin layer chromatography (TLC) analysis. Furthermore, microsomal membrane preparations typically contain endogenous diacylglycerol acyltransferase (DGAT) from the host cells, and these DGAT activities can further acylate DAG to form triglyceride (TG). Our mass spectrometry (liquid chromatography-tandem mass spectrometry, or LC/MS/MS) MGAT2 assay measures human recombinant MGAT2-catalyzed formation of didecanoyl-glycerol from 1-Decanoyl-rac-glycerol and decanoyl-CoA, to produce predominantly 1,3-didecanoyl-glycerol. Unlike 1,2-DAG, 1,3-didecanoyl-glycerol is proved to be not susceptible to further acylation to TG. 1,3-Didecanoyl-glycerol product can be readily solubilized and directly subjected to high-throughput mass spectrometry (HTMS) without further extraction in a 384-well format. We also have established the LC/MS/MS MGAT activity assay in the intestinal microsomes from various species. Our assay is proved to be highly sensitive, and thus it allows measurement of endogenous MGAT activity in cell lysates and tissue preparations. The implementation of the HTMS MGAT activity assay has facilitated the robust screening and evaluation of MGAT inhibitors for the treatment of metabolic diseases.

Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system

Tissue Barriers 2017 Jul 3;5(3):e1361900.PMID:28837408DOI:10.1080/21688370.2017.1361900.

Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular passage can be achieved by cell membrane permeabilization and/or by endocytic uptake and subsequent transcytosis. One broad class of PEs is surfactants which act by inserting into the cell membrane, thereby perturbing its integrity, but little is known about how the dynamics of the membrane are affected. In the present work, the interaction of the surfactants lauroyl-L-carnitine, 1-Decanoyl-rac-glycerol, and nonaethylene glycol monododecyl ether with the intestinal epithelium was studied in organ cultured pig jejunal mucosal explants. As expected, at 2 mM, these agents rapidly permeabilized the enterocytes for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border microvilli. Such a membrane fusogenic activity could also explain the observed formation of vesicle-like structures and large vacuoles along the lateral cell membranes of the enterocytes induced by the PEs. We conclude that the surfactant action of the PEs selected in this study not only permeabilized the enterocytes, but profoundly changed the dynamic properties of their constituent cell membranes.

Optimized reverse micelle surfactant system for high-resolution NMR spectroscopy of encapsulated proteins and nucleic acids dissolved in low viscosity fluids

J Am Chem Soc 2014 Mar 5;136(9):3465-74.PMID:24495164DOI:10.1021/ja410716w.

An optimized reverse micelle surfactant system has been developed for solution nuclear magnetic resonance studies of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. Comprising the nonionic 1-Decanoyl-rac-glycerol and the zwitterionic lauryldimethylamine-N-oxide (10MAG/LDAO), this mixture is shown to efficiently encapsulate a diverse set of proteins and nucleic acids. Chemical shift analyses of these systems show that high structural fidelity is achieved upon encapsulation. The 10MAG/LDAO surfactant system reduces the molecular reorientation time for encapsulated macromolecules larger than ~20 kDa leading to improved overall NMR performance. The 10MAG/LDAO system can also be used for solution NMR studies of lipid-modified proteins. New and efficient strategies for optimization of encapsulation conditions are described. 10MAG/LDAO performs well in both the low viscosity pentane and ultralow viscosity liquid ethane and therefore will serve as a general surfactant system for initiating solution NMR studies of proteins and nucleic acids.