1-Methylpyrrolidine
(Synonyms: 1-甲基吡咯烷) 目录号 : GC396851-Methylpyrrolidine is extensively used in the synthesis of pyrrolidine based ionic liquids.
Cas No.:120-94-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
1-Methylpyrrolidine is extensively used in the synthesis of pyrrolidine based ionic liquids.
Cas No. | 120-94-5 | SDF | |
别名 | 1-甲基吡咯烷 | ||
Canonical SMILES | CN1CCCC1 | ||
分子式 | C5H11N | 分子量 | 85.15 |
溶解度 | DMSO : 100 mg/mL (1174.40 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 11.744 mL | 58.7199 mL | 117.4398 mL |
5 mM | 2.3488 mL | 11.744 mL | 23.488 mL |
10 mM | 1.1744 mL | 5.872 mL | 11.744 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
1-Methylpyrrolidine-2-acetic Acid is not a Precursor of Tropane Alkaloids
Phytochemistry 1996 Feb;41(3):767-73.PMID:8835455DOI:10.1016/0031-9422(95)00667-2.
1-Methylpyrrolidine-2-acetic acid and related compounds were studied as precursors in the biosynthesis of the tropane alkaloids in Erythroxylum coca and Datura innoxia. (R,S)-[1',2-(13)C2,2-(14)C,(15)N]-1-methylpyrrolidine-2- acid, (R,S)-[1',2'-(13)C2,1'-(14)C]-1-methylpyrrolidine-2-acetic acid, (R,S) [1',2'-(13)C2,1-(14)C]-1-methylpyrrolidine-2-acetate, and (R,S)-+2'-(14)C] methylpyrrolidine-2-acetic acid N-acetylcysteamine thioester were synthesized an intact plants by leaf-planting or hydroponic-feeding. Specific incorporation of compounds into ( - )-hyoscyamine, ( - )-scopolamine, ( - )-cocaine and the biosynthetically related cuscohygrine were very low. These results indicate that 1-Methylpyrrolidine acid is not an efficient precursor of tropane alkaloids.
Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect
ChemSusChem 2021 Nov 19;14(22):5021-5031.PMID:34498428DOI:10.1002/cssc.202101446.
The rise of heterocycle cations, a new class of stable cations, has fueled faster growth of research interest in heterocycle cation-attached anion exchange membranes (AEMs). However, once cations are grafted onto backbones, the effect of backbones on properties of AEMs must also be taken into account. In order to comprehensively study the influence of cations effect and backbones effect on AEMs performance, a series of AEMs were prepared by grafting spacer cations, heterocycles cations, and aromatic cations onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) or poly(vinylbenzyl chloride) (PVB) backbones, respectively. Spacer cation [trimethylamine (TMA), N,N-dimethylethylamine (DMEA)]-attached AEMs showed general ion transportation and stability behaviors, but exhibited high cationic reaction efficiency. Heterocycle cation [1-Methylpyrrolidine (MPY), 1-methylpiperidine (MPrD)]-attached AEMs showed excellent chemical stability, but their ion conduction properties were unimpressive. Aromatic cation [1-methylimidazole (MeIm), N,N-dimethylaniline (DMAni)]-attached AEMs exhibited superior ionic conductivity, while their poor cations stabilities hindered the application of the membranes. Besides, it was found that PVB-based AEMs had excellent backbone stability, but BPPO-based AEMs exhibited higher OH- conductivity and cation stability than those of the same cations grafted PVB-based AEMs due to their higher water uptake (WU). For example, the ionic conductivities (ICs) of BPPO-TMA and PVB-TMA at 80 °C were 53.1 and 38.3 mS cm-1 , and their WU was 152.3 and 95.1 %, respectively. After the stability test, the IC losses of BPPO-TMA and PVB-TMA were 21.4 and 32.2 %, respectively. The result demonstrated that the conductivity and stability properties of the AEMs could be enhanced by increasing the WU of the membranes. These findings allowed the matching of cations to the appropriate backbones and reasonable modification of the AEM structure. In addition, these results helped to fundamentally understand the influence of cation effect and backbone effect on AEM performance.
5-Fluoro-2'-deoxycytidine as a Probe for the Study of B/Z-DNA Transition by 19F NMR Spectroscopy
ACS Omega 2019 Nov 15;4(22):19716-19722.PMID:31788603DOI:10.1021/acsomega.9b02461.
5-Fluoro-2'-deoxycytidine was synthesized by treating 5-fluoro-2'-deoxyuridine with 2,4,6-trimethylphenol in the presence of 1-Methylpyrrolidine and trifluoroacetic anhydride, followed by aminolysis. Among N-acetyl, pivaloyl, and benzoyl, N-acetyl was found to be suitable for the protection of the exocyclic amine of 5-fluoro-2'-deoxycytidine because of the stability of the N 4-protected nucleoside under acidic conditions and its ease of removal after solid-phase synthesis. This modified nucleoside was incorporated into d(CG)6 sequences through the phosphoramidite chemistry-based solid-phase synthesis. Circular dichroism experiments suggest that replacement of 2'-deoxycytidine with 5-fluoro-2'-deoxycytidine does not lead to detectable conformational changes, either in the B- or Z-form. 19F NMR spectroscopy of d(CG)6 containing 5-fluoro-2'-deoxycytidine revealed that B/Z-DNA transition induced by sodium chloride is likely initiated at terminal ends, leading to unwinding at the middle of duplexes, and eventual switch of handedness when sodium chloride concentration reaches a threshold value.