10-Nitrolinoleate
(Synonyms: 10-LNO2, 10nitro9,12Octadecadienoic Acid, 10-NO2-LA) 目录号 : GC41867A nitrated fatty acid and PPARγ agonist
Cas No.:774603-04-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
10-Nitrolinoleate is the product of nitration of linoleate by NO-derived reactive species. Other nitrolinoleates detected in human plasma and urine include 9-, 12-, and 13-nitrolinoleate. Nitrolinoleates activate peroxisome proliferator-activated receptor γ (PPARγ; Ki = 133 nM), inducing CD36 expression in macrophages, adipocyte differentiation, and glucose uptake. Nitrolinoleates can also be metabolized by smooth muscle cells to produce nitrite derivatives which in turn form NO, leading to increased cGMP production and smooth muscle relaxation. Through the same mechanism, nitrolinoleate-derived NO suppresses leukocyte adhesion, in part through nitrosation of CD40. Alteratively, nitrolinoleates can act independently of NO/cGMP and PPARγ signaling to suppress neutrophil and macrophage functions.
Cas No. | 774603-04-2 | SDF | |
别名 | 10-LNO2, 10nitro9,12Octadecadienoic Acid, 10-NO2-LA | ||
Canonical SMILES | CCCCC/C=C\C/C([N+]([O-])=O)=C\CCCCCCCC(O)=O | ||
分子式 | C18H31NO4 | 分子量 | 325.4 |
溶解度 | DMF: 30 mg/ml,DMSO: 25 mg/ml,Ethanol: 30 mg/ml,Ethanol:PBS(pH 7.2) (1:1): 0.5 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.0731 mL | 15.3657 mL | 30.7314 mL |
5 mM | 0.6146 mL | 3.0731 mL | 6.1463 mL |
10 mM | 0.3073 mL | 1.5366 mL | 3.0731 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Allosteric Regulation of the Soluble Epoxide Hydrolase by Nitro Fatty Acids: a Combined Experimental and Computational Approach
J Mol Biol 2022 Sep 15;434(17):167600.PMID:35460669DOI:10.1016/j.jmb.2022.167600
The human soluble epoxide hydrolase (hsEH) is a key regulator of epoxy fatty acid (EpFA) metabolism. Inhibition of sEH can maintain endogenous levels of beneficial EpFAs and reduce the levels of their corresponding diol products, thus ameliorating a variety of pathological conditions including cardiovascular, central nervous system and metabolic diseases. The quest for orthosteric drugs that bind directly to the catalytic crevice of hsEH has been prolonged and sustained over the past decades, but the disappointing outcome of clinical trials to date warrants alternative pharmacological approaches. Previously, we have shown that hsEH can be allosterically inhibited by the endogenous electrophilic lipid 15-deoxy-Δ12,14-Prostaglandin-J2, via covalent adduction to two cysteines, C423 and C522. In this study, we explore the properties and behaviour of three electrophilic lipids belonging to the class of the nitro fatty acids, namely 9- and 10-nitrooleate and 10-Nitrolinoleate. Biochemical and biophysical investigations revealed that, in addition to C423 and C522, nitro fatty acids can covalently bind to additional nucleophilic residues in hsEH C-terminal domain (CTD), two of which predicted in this study to be latent allosteric sites. Systematic mapping of the protein mutational space and evaluation of possible propagation pathways delineated selected residues, both in the allosteric patches and in other regions of the enzyme, envisaged to play a role in allosteric signalling. The responses elicited by the ligands on the covalent adduction sites supports future fragment-based design studies of new allosteric effectors for hsEH with increased efficacy and selectivity.