Home>>Signaling Pathways>> Others>> Others>>10-Undecen-1-ol

10-Undecen-1-ol Sale

(Synonyms: 十一烯醇) 目录号 : GC60440

10-Undecen-1-ol is used as a flavoring agent.

10-Undecen-1-ol Chemical Structure

Cas No.:112-43-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥495.00
现货
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

10-Undecen-1-ol is used as a flavoring agent.

Chemical Properties

Cas No. 112-43-6 SDF
别名 十一烯醇
Canonical SMILES C=CCCCCCCCCCO
分子式 C11H22O 分子量 170.29
溶解度 DMSO: 100 mg/mL (587.23 mM) 储存条件 4°C, stored under nitroge
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.8723 mL 29.3617 mL 58.7234 mL
5 mM 1.1745 mL 5.8723 mL 11.7447 mL
10 mM 0.5872 mL 2.9362 mL 5.8723 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Transport and Separation of the Silver Ion with n-decanol Liquid Membranes Based on 10-undecylenic Acid, 10-Undecen-1-ol and Magnetic Nanoparticles

Membranes (Basel) 2021 Nov 27;11(12):936.PMID:34940437DOI:10.3390/membranes11120936.

This paper presents a transport and recovery of silver ions through bulk liquid membranes based on n-decanol using as carriers 10-undecylenic acid and 10-undecylenyl alcohol. The transport of silver ions across membranes has been studied in the presence of two types of magnetic oxide nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver ions by bulk liquid membranes using 10-undecylenic acid and 10-undecylenyl alcohol as carriers were performed by comparison with lead ions. The configuration of the separation module has been specially designed for the chosen separation process. Convective-generating magnetic nanoparticles were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested were tested for silver ion transport and separation through n-decanol liquid membranes with selected carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase, pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl alcohol.

Novel vanadium(III) complexes with bidentate N,N-chelating iminopyrrolide ligands: synthesis, characterization and catalytic behaviour of ethylene polymerization and copolymerization with 10-Undecen-1-ol

Dalton Trans 2009 Nov 7;(41):8854-63.PMID:19826717DOI:10.1039/b909495d.

A series of novel vanadium(III) complexes bearing iminopyrrolide chelating ligands [2-(RN=CH)C4H3N]V(THF)2Cl2 (2a: R = cyclohexyl; 2b: R = Ph; 2c: R = 2,6-iPr2C6H3; 2d: R = p-CF3C6H4; 2e: R = C6F5) have been synthesized and characterized. Single-crystal X-ray diffraction revealed that complexes 2a, 2c and 2e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a co-catalyst, these complexes displayed high catalytic activities up to 48.6 kg PE mmol(V)(-1) h(-1) bar(-1) for ethylene polymerization, and produced high molecular weight polymers. 2a-e/Et2AlCl catalytic systems were tolerant to elevated temperature (70 degrees C) and yielded unimodal polyethylenes, indicating the single site behaviour of these catalysts. By pre-treating with equimolar amounts of alkylaluminums, functional alpha-olefin 10-Undecen-1-ol can be efficiently incorporated into polyethylene chains. 10-Undecen-1-ol incorporation can easily reach 15.8 mol% under the mild conditions. When compared with VCl3(THF)3 or rac-Et[Ind]2ZrCl2, these vanadium(III) complexes exhibited higher activities towards the copolymerization, and can incorporate more 10-Undecen-1-ol into polymer chains under the similar conditions.

Lipase specificity toward some acetylenic and olefinic alcohols in the esterification of pentanoic and stearic acids

Lipids 1998 Sep;33(9):861-7.PMID:9778133DOI:10.1007/s11745-998-0282-y.

The esterification of five medium- and long-chain acetylenic alcohols (2-nonyn-1-ol, 10-undecyn-1-ol, 6-octadecyn-1-ol, 9-octadecyn-1-ol, and 13-docosyn-1-ol), seven olefinic alcohols (cis-3-nonen-1-ol, 10-Undecen-1-ol, cis-6-octadecen-1-ol, cis-9-octadecen-1-ol, trans-9-octadecen-1-ol, trans-9, trans-11-octadecadien-1-ol, cis-9,cis-12-octadecadien-1-ol), and four short-chain unsaturated alcohols (allyl alcohol, 3-butyn-1-ol, 3-pentyn-1-ol, and cis-2-penten-1-ol) with pentanoic or stearic acid in the presence of various lipase preparations was studied. With the exception of 2-nonyn-1-ol, where Lipase AY-30 (Candida rugosa) was used as the biocatalyst, the esterification of C11, C18, and C22 acetylenic alcohols with pentanoic acid appeared to be generally unaffected by the presence of an acetylenic bond in the alcohol as relatively high yields of the corresponding esters (78-97%) were obtained. However, medium- and long-chain olefinic alcohols were discriminated by Lipase AY-30, Lipolase 100T (Rhizomucor miehei), and especially by porcine pancreatic lipase (PPL), when esterification was conducted with pentanoic acid. Esterification of medium- and long-chain acetylenic or olefinic alcohols with a long-chain fatty acid, stearic acid, was very efficient except when Lipase AY-30 and Lipolase 100T were used. Short-chain unsaturated alcohols were much more readily discriminated. 3-Pentyn-1-ol and 3-butyn-1-ol were difficult (<5% yield) to esterify with pentanoic or stearic acid in the presence of Lipase AY-30 and PPL, respectively. Very low yields (<26%) of esters were produced when 3-butyn-1-ol and 3-pentyn-1-ol were reacted with pentanoic or stearic acid, when catalyzed by lipase from Candida cylindracea. No reaction took place between 3-butyn-1-ol and stearic acids in the presence of Lipase AY-30. Esterification of short-chain acetylenic and olefinic alcohols was most efficiently achieved with Lipolase 100T (Rhizomucor miehei), Lipozyme IM20 (Rh. miehei), or Novozyme 435 (Candida antarctica) as the biocatalyst.

Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols

Polymers (Basel) 2022 Nov 17;14(22):4973.PMID:36433100DOI:10.3390/polym14224973.

Biobased hydroxyl-terminated polybutadiene (HTPB) was successfully synthesized in a one-pot reaction via metathesis degradation of industrial rubbers. Thus, polybutadiene (PB) and poly(styrene-butadiene-styrene) (SBS) were degraded via metathesis with high yields (>94%), using the fatty alcohol 10-Undecen-1-ol as a chain transfer agent (CTA) and the second-generation Grubbs−Hoveyda catalyst. The identification of the hydroxyl groups (-OH) and the formation of biobased HTPB were verified by FT-IR and NMR. Likewise, the molecular weight and properties of the HTPB were controlled by changing the molar ratio of rubber to CTA ([C=C]/CTA) from 1:1 to 100:1, considering a constant molar ratio of the catalyst ([C=C]/Ru = 500:1). The number average molecular weight (Mn) ranged between 583 and 6580 g/mol and the decomposition temperatures between 134 and 220 °C. Moreover, the catalyst optimization study showed that at catalyst loadings as low as [C=C]/Ru = 5000:1, the theoretical molecular weight is in good agreement with the experimental molecular weight and the expected diols and polyols are formed. At higher ratios than those, the difference between theoretical and experimental molecular weight is wide, and there is no control over HTPB. Therefore, the rubber/CTA molar ratio and the amount of catalyst play an important role in PB degradation and HTPB synthesis. Biobased HTPB can be used to synthesize engineering design polymers, intermediates, fine chemicals, and in the polyurethane industry, and contribute to the development of environmentally friendly raw materials.

Potential biotechnological capabilities of cultivable mycobiota from carwash effluents

Microbiologyopen 2017 Oct;6(5):e00498.PMID:28714266DOI:10.1002/mbo3.498.

Urban life has created man-made extreme environments like carwashes. These environments have, however, not been sufficiently explored for mycobiota that can be sources of biotechnologically useful products, as has been the case with natural extreme environments. Using a combination of culture and molecular techniques, fungi from carwash effluents was characterized for production of lipase and cellulase enzymes, nonpolar and polar biotechnologically relevant secondary metabolites and hydrocarbon utilization. The isolated fungal strains belonged to the genera Alternaria, Cladosporium, Penicillium, Peyronellaea, Rhizopus, Spegazzinia, Trichoderma, Ulocladium and Yarrowia. Sixty-six percent (66%) of the fungal isolates were found to be able to metabolize naphthalene and benzanthracene, showing potential for application in bioremediation of hydrocarbon polluted sites. Lipase production by the isolates Penicillium sp. BPS3 (2.61 U/ml), Trichoderma sp. BPS9 (2.01 U/ml), Rhizopus sp. CAL1 (2.05 U/ml), Penicillium sp. PCW1 (2.99 U/ml) and Penicillium sp. SAS1 (2.16 U/ml) compared well with previously recorded lipase production levels by other fungi. The highest producers of cellulase were Penicillium sp. SAS1 (12.10 U/ml), Peyronella sp. CAW5 (4.49 U/ml) and Cladosporium sp. SAS3 (4.07 U/ml), although these activities were lower than previously reported levels. GC-MS analysis of the fungal secondary metabolites resulted in identification of 572 compounds, including azulene, methanamine, N-pentylidene, metoclopramide, and mepivacaine while compounds determined by UHPLC-MS included 10-Undecen-1-ol, piquerol A, 10-undecyn-1-ol, cyclo(leucylprolyl) and rac-etomidate. These compounds were previously determined to have various activities including anticancer, antibacterial, antifungal, antihypertensive, antidiabetic and anti-inflammatory properties. The study demonstrated that fungi from carwash effluents are natural sources of some biotechnologically important products.