12-SAHSA
目录号 : GC41891A FAHFA with anti-diabetic potential
Cas No.:51350-61-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are newly identified endogenous lipids regulated by fasting and high-fat feeding and associated with insulin sensitivity. Structurally, these esters are comprised of a C-16 or C-18 fatty acid (e.g., palmitoleic, palmitic, oleic, or stearic acid) linked to either a C-16 or C-18 hydroxy substituent. 12-SAHSA is a FAHFA consisting of stearic acid esterified to 12-hydroxy stearic acid. The levels of SAHSA are moderately elevated in the serum of glucose tolerant AG4OX mice, which overexpress the Glut4 glucose transporter specifically in adipose tissue.
Cas No. | 51350-61-9 | SDF | |
Canonical SMILES | OC(CCCCCCCCCCC(OC(CCCCCCCCCCCCCCCCC)=O)CCCCCC)=O | ||
分子式 | C36H70O4 | 分子量 | 566.9 |
溶解度 | DMF: 20 mg/ml,DMSO: 15 mg/ml,Ethanol: 20 mg/ml,Ethanol:PBS(pH 7.2) (1:1): 0.5 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.764 mL | 8.8199 mL | 17.6398 mL |
5 mM | 0.3528 mL | 1.764 mL | 3.528 mL |
10 mM | 0.1764 mL | 0.882 mL | 1.764 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Highly sensitive determination of fatty acid esters of hydroxyl fatty acids by liquid chromatography-mass spectrometry
J Chromatogr B Analyt Technol Biomed Life Sci 2017 Sep 1;1061-1062:34-40.PMID:28704723DOI:10.1016/j.jchromb.2017.06.045
Recently, a new class of endogenous lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), was discovered with anti-diabetic and anti-inflammatory effects in mammals. FAHFAs attracted increasing attention because of their critical physiological function. However, accurate quantitation of FAHFAs is still a challenge due to their high structure similarity and low abundance in biological samples. Herein, we developed a highly sensitive method for the determination of 16 FAHFAs (PAHSAs, OAHSAs, SAHSAs and POHSAs) in biological samples by coupling strong anion exchange solid phase extraction (SAX-SPE) with chemical labeling assisted ultra-high performance liquid chromatography/mass spectrometry (SAX-SPE-CL-UHPLC/MS). In the developed method, SAX-SPE was employed to selectively enrich and purify FAHFAs from biological samples. And then a pair of isotope labeling reagents, 2-dimethylaminoethylamine (DMED) and d4-DMED were used to label the purified samples and standard FAHFAs, respectively. The labeled samples were mixed and further subjected to UHPLC/MS analysis. Our results demonstrated that the detection sensitivities of FAHFAs increased by 7-72 folds upon DMED labeling and the limits of detections (LODs) of labeled FAHFAs ranged from 0.01 to 0.14pg. Moreover, a good separation of FAHFAs isomers was achieved on C18 column in a UHPLC system and all FAHFAs could be analyzed in 20min with sharp peak shape. The established method provided substantial sensitivity, high specificity, and broad linear dynamic range (3 orders of magnitude). Using this method, we successfully measured the contents and distribution of FAHFAs in rat white adipose, lung, kidney, thymus, liver and heart tissues. The results showed that 7 FAHFAs (13-, 12-, 9-, 5-PAHSA, 13-, 12- and 9-SAHSA) were observed in different tissues of rat. In addition, we successfully detected the above 7 FAHFAs in human serum samples; and among the 7 FAHFAs, 13-, 9-PAHSA, 13- and 12-SAHSA were found remarkably decreased in human breast cancer serum. The proposed method could be successfully applied for the detection of FAHFAs in various biological samples, which will facilitate the understanding of the physiological functions of FAHFAs.