13-OxoODE
(Synonyms: 13-KODE) 目录号 : GC41914The product of NAD+-dependent dehydrogenase activity on 13-HODE
Cas No.:54739-30-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
13-oxoODE is produced from 13-HODE by a NAD+-dependent dehydrogenase present in rat colonic mucosa.[1] 13-OxoODE stimulates cell proliferation when instilled intrarectally in rats.[2] 13-OxoODE has also been detected in preparations of rabbit reticulocyte plasma and mitochondrial membranes, mostly esterified to phospholipids. Production of 13-oxoODE is putatively linked to the maturation of reticulocytes to erythrocytes through the activity of 15-LO.[3][4]
Reference:
[1]. Earles, S.M., Bronstein, J.C., Winner, D.L., et al. Metabolism of oxidized linoleic acid: Characterization of 13-hydroxyoctadecadienoic acid dehydrogenase activity from rat colonic tissue. Biochim. Biophys. Acta 1081(2), 174-180 (1991).
[2]. Bull, A.W., and Bronstein, J.C. Production of unsaturated carbonyl compounds during metabolism of hydroperoxy fatty acids by colonic homogenates. Carcinogenesis 11(10), 1699-1704 (1990).
[3]. Kühn, H., Belkner, J., Wiesner, R., et al. Occurrence of 9- and 13-keto-octadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase. Arch. Biochem. Biophys. 279(2), 218-224 (1990).
[4]. Kühn, H., Belkner, J., and Wiesner, R. Subcellular distribution of lipoxygenase products in rabbit reticulocyte membranes. Eur. J. Biochem. 191(1), 221-227 (1990).
Cas No. | 54739-30-9 | SDF | |
别名 | 13-KODE | ||
化学名 | 13-oxo-9Z,11E-octadecadienoic acid | ||
Canonical SMILES | CCCCCC(=O)/C=C\C=C\CCCCCCCC(=O)O | ||
分子式 | C18H30O3 | 分子量 | 294.4 |
溶解度 | 50 mg/ml in DMF, 50 mg/ml in DMSO, 50 mg/ml in Ethanol | 储存条件 | Store at -80°C, protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3967 mL | 16.9837 mL | 33.9674 mL |
5 mM | 0.6793 mL | 3.3967 mL | 6.7935 mL |
10 mM | 0.3397 mL | 1.6984 mL | 3.3967 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
A Low ω-6 to ω-3 PUFA Ratio (n-6:n-3 PUFA) Diet to Treat Fatty Liver Disease in Obese Youth
J Nutr 2020 Sep 1;150(9):2314-2321.PMID:32652034DOI:10.1093/jn/nxaa183.
Background: Recent literature suggests that the Western diet's imbalance between high ω-6 (n-6) and low ω-3 (n-3) PUFA intake contributes to fatty liver disease in obese youth. Objectives: We tested whether 12 wk of a low n-6:n-3 PUFA ratio (4:1) normocaloric diet mitigates fatty liver and whether the patatin-like containing domain phospholipase 3 (PNPLA3) rs738409 variant affects the response. Methods: In a single-arm unblinded study, obese youth 9-19 y of age with nonalcoholic fatty liver disease were treated with a normocaloric low n-6:n-3 PUFA ratio diet for 12 wk. The primary outcome was change in hepatic fat fraction (HFF%), measured by abdominal MRI. Metabolic parameters included alanine aminotransferase (ALT), lipids, measures of insulin sensitivity, and plasma oxidized linoleic acid metabolites (OXLAMs). Outcomes were also analyzed by PNPLA3 rs738409 genotype. Wilcoxon's signed rank test, the Mann-Whitney U test, and covariance pattern modeling were used. Results: Twenty obese adolescents (median age: 13.3 y; IQR: 10.5-16.4 y) were enrolled and 17 completed the study. After 12 wk of dietary intervention, HFF% decreased by 25.8% (P = 0.009) despite stable weight. We observed a 34.4% reduction in ALT (P = 0.001), 21.9% reduction in triglycerides (P = 0.046), 3.28% reduction in LDL cholesterol (P = 0.071), and a 26.3% improvement in whole body insulin sensitivity (P = 0.032). The OXLAMs 9-hydroxy-octadecandienoic acid (9-HODE) (P = 0.011), 13-HODE (P = 0.007), and 9-oxo-octadecadienoic acid (9-oxoODE) (P = 0.024) decreased after 12 wk. HFF% declined in both the not-at-risk (CC/CG) and at-risk (GG) PNPLA3 rs738409 genotype groups, with significant (P = 0.016) HFF% reduction in the GG group. Changes in 9-HODE (P = 0.023), 9-oxoODE (P = 0.009), and 13-OxoODE (P = 0.003) differed between the 2 genotype groups over time. Conclusions: These data suggest that, independently of weight loss, a low n-6:n-3 PUFA diet ameliorates the metabolic phenotype of adolescents with fatty liver disease and that response to this diet is modulated by the PNPLA3 rs738409 genotype.This trial was registered at clinicaltrials.gov as NCT01556113.
Identification and profiling of targeted oxidized linoleic acid metabolites in rat plasma by quadrupole time-of-flight mass spectrometry
Biomed Chromatogr 2013 Apr;27(4):422-32.PMID:23037960DOI:10.1002/bmc.2809.
Linoleic acid (LA) and LA-esters are the precursors of LA hydroperoxides, which are readily converted to 9- and 13-hydroxy-octadecadienoic acid (HODE) and 9- and 13-oxo-octadecadienoic acid (oxo ODE) metabolites in vivo. These four oxidized LA metabolites (OXLAMs) have been implicated in a variety of pathological conditions. Therefore, their accurate measurement may provide mechanistic insights into disease pathogenesis. Here we present a novel quadrupole time-of-flight mass spectrometry (Q-TOFMS) method for quantitation and identification of target OXLAMs in rat plasma. In this method, the esterified OXLAMs were base-hydrolyzed and followed by liquid-liquid extraction. Quantitative analyses were based on one-point standard addition with isotope dilution. The Q-TOFMS data of target metabolites were acquired and multiple reaction monitoring extracted-ion chromatograms were generated post-acquisition with a 10 ppm extraction window. The limit of quantitation was 9.7-35.9 nmol/L depending on the metabolite. The method was reproducible with a coefficient of variation of <18.5%. Mean concentrations of target metabolites in rat plasma were 57.8, 123.2, 218.1 and 57.8 nmol/L for 9-HODE, 13-HODE, 9-oxoODE and 13-OxoODE, respectively. Plasma levels of total OXLAMs were 456.9 nmol/L, which correlated well with published concentrations obtained by gas chromatography/mass spectrometry (GC/MS). The concentrations were also obtained utilizing a standard addition curve approach. The calibration curves were linear with correlation coefficients of >0.991. Concentrations of 9-HODE, 13-HODE, 9-oxoODE and 13-OxoODE were 84.0, 138.6, 263.0 and 69.5 nmol/L, respectively, which were consistent with the results obtained from one-point standard addition. Target metabolites were simultaneously characterized based on the accurate Q-TOFMS data. This is the first study of secondary LA metabolites using Q-TOFMS. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity
PLoS One 2022 Dec 15;17(12):e0277053.PMID:36520866DOI:10.1371/journal.pone.0277053.
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-OxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Lipid mediators are detectable in the nasal epithelium and differ by asthma status in female subjects
J Allergy Clin Immunol 2022 Oct;150(4):965-971.e8.PMID:PMC9475490DOI:10.1016/j.jaci.2022.02.026.
Background: Lipid mediators, bioactive products of polyunsaturated fatty acid metabolism, contribute to inflammation initiation and resolution in allergic diseases; however, their presence in lung-related biosamples has not been fully described. Objective: We aimed to quantify lipid mediators in the nasal airway epithelium and characterize preliminary associations with asthma. Methods: Using liquid chromatography-mass spectrometry, we conducted a pilot study to quantify 56 lipid mediators from nasal epithelial samples collected from 11 female participants of an outpatient asthma clinic and community controls (aged 30-55 years). We examined the presence of each compound using descriptive statistics to test whether lipid mediators could distinguish subjects with asthma (n = 8) from control subjects (n = 3) using linear regression and partial least squares discriminant analysis. Results: Fifteen lipid mediators were detectable in all samples, including resolvin (Rv) D5 (RvD5), with the highest median concentrations (in pg/μg protein) of 13-HODE (126.481), 15-HETE (32.869), and 13-OxoODE (13.251). From linear regression adjusted for age, prostaglandin E2 (PGE2) had a trend (P < .1) for higher concentrations in patients with severe asthma compared to controls (mean difference, 0.95; 95% confidence interval, -0.04 to 1.95). Asthma patients had higher scores on principal component 3 compared to controls (mean difference, 2.42; 95% confidence interval, 0.89 to 3.96), which represented lower levels of proresolving 15-HEPE, 19,20-DiHDPA, RvD5, 14-HDHA, 17-HDHA, and 13-HOTrE. Most of these compounds were best at discriminating asthma cases from controls in partial least squares discriminant analysis. Conclusion: Lipid mediators are detectable in the nasal epithelium, and their levels distinguish asthma cases from controls.
Discovery of aspirin-triggered eicosanoid-like mediators in a Drosophila metainflammation blood tumor model
J Cell Sci 2019 Oct 28;133(5):jcs236141.PMID:31562189DOI:10.1242/jcs.236141.
Epidemiologic studies have linked the use of aspirin to a decline in chronic inflammation that underlies many human diseases, including some cancers. Aspirin reduces the levels of cyclooxygenase-mediated pro-inflammatory prostaglandins, promotes the production of pro-resolution molecules, and triggers the production of anti-inflammatory electrophilic mono-oxygenated (EFOX) lipid mediators. We investigated the effects of aspirin in fruit fly models of chronic inflammation. Ectopic Toll/NF-κB and JAK/STAT signaling in mutant D. melanogaster results in overproliferation of hematopoietic blood progenitors resulting in the formation of granuloma-like tumors. Ectopic JAK-STAT signaling also leads to metabolic inflammation. We report that aspirin-treated mutant flies experience reduction in metabolic inflammation, mitosis, ectopic immune signaling, and macrophage infiltration. Moreover, these flies synthesize 13-HODE, and aspirin triggers 13-OxoODE (13-EFOX-L2) production. Providing the precursor of 13-HODE, linoleic acid, or performing targeted knockdown of the transcription factor STAT in inflammatory blood cells, boosts 13-EFOX-L2 levels while decreasing metabolic inflammation. Thus, hematopoietic cells regulate metabolic inflammation in flies, and their effects can be reversed by pharmaceutical or dietary intervention, suggesting deep phylogenetic conservation in the ability of animals to resolve inflammation and repair tissue damage. These findings can help identify novel treatment targets in humans.