13C6-3-Nitrophenylhydrazine (hydrochloride)
(Synonyms: 13C6-3-NPH) 目录号 : GC41909A 13C-labeled derivatizing reagent
Cas No.:1977535-33-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
13C6-3-Nitrophenylhydrazine is a 13C-labeled derivatizing reagent for carboxylic acids.[1] It is useful for LC-MS analysis of volatile acids such as short chain fatty acids.
Reference:
[1]. Sobsey, C.A., Han, J., Lin, K., et al. Development and evaluation of a liquid chromatography-mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1029-1030, 205-212 (2016).
Cas No. | 1977535-33-3 | SDF | |
别名 | 13C6-3-NPH | ||
化学名 | (3-nitrophenyl-1,2,3,4,5,6-13C6)hydrazine, monohydrochloride | ||
Canonical SMILES | NN[13C]1=[13CH][13CH]=[13CH][13C]([N+]([O-])=O)=[13CH]1.Cl | ||
分子式 | [13C]6H7N3O2 • HCl | 分子量 | 195.6 |
溶解度 | 5mg/mL in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 5.1125 mL | 25.5624 mL | 51.1247 mL |
5 mM | 1.0225 mL | 5.1125 mL | 10.2249 mL |
10 mM | 0.5112 mL | 2.5562 mL | 5.1125 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
1-[4-(2-Dimethylaminoethoxy)phenylcarbonyl]-3,5-Bis(3,4,5-Trimethoxybenzylidene)- 4-Piperidone hydrochloride and Related Compounds: Potent Cytotoxins Demonstrate Greater Toxicity to Neoplasms than Non- Malignant Cells
Med Chem 2022;18(9):1001-1012.PMID:35319387DOI:10.2174/1573406418666220322154110.
Background: The incidence of cancer has been increasing worldwide. Unfortunately, the drugs used in cancer chemotherapy are toxic to both neoplasms and normal tissues, while many available medications have low potencies. Conjugated α,β-unsaturated ketones differ structurally from contemporary anticancer medications , some of which have noteworthy antineoplastic properties. Objectives: This study aimed to design and synthesize highly potent cytotoxins with far greater toxicity to neoplasms than to non-malignant cells. Methods: A series of N-acyl-3,5-bis(benzylidene)-4-piperidone hydrochlorides 4a-n were prepared and evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas as well as against HGF, HPLF, and HPC non-malignant cells. QSAR and western blot analyses were performed. Results: The majority of compounds display submicromolar CC50 values towards the neoplasms; the figures for some of the compounds are below 10-7 M. In general, 4a-n have much lower CC50 values than those of melphalan, 5-fluorouracil, and methotrexate, while some compounds are equitoxic with doxorubicin. The compounds are far less toxic to the non-malignant cells, giving rise to substantial selectivity index (SI) figures. A QSAR study revealed that both potency and the SI data were controlled to a large extent by the electronic properties of the substituents in the arylidene aryl rings. Two representative compounds, 4f and 4g, caused apoptosis in HSC-2 cells. Conclusion: The compounds in series 4 are potent cytotoxins displaying tumor-selective toxicity. In particular, 4g with an average CC50 value of 0.04 μM towards four malignant cell lines and a selectivity index of 46.3 is clearly a lead molecule that should be further evaluated.
Synthesis of 2-(1,5-diaryl-1,4-pentadien-3-ylidene)-hydrazinecarboximidamide hydrochloride catalyzed by p-dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation
Ultrason Sonochem 2012 Sep;19(5):1033-8.PMID:22440718DOI:10.1016/j.ultsonch.2012.02.009.
Amidinohydrazone compounds are very important synthetic intermediates and can serve as versatile precursors in synthesis of many natural products and drug molecules. The use of ultrasound, p-dodecylbenzenesulfonic acid (DBSA) and water as solvent improved the synthesis of different 2-(1,5-diaryl-1,4-pentadien-3-ylidene)-hydrazinecarboximidamide hydrochlorides. The best reaction conditions for the condensation of 1,5-diphenyl-1,4-pentadien-3-one with aminoguanidine hydrochloride were as follows: 1,5-diphenyl-1,4-pentadiene-3-one (1, 1 mmol), aminoguanidine hydrochloride (1.1 mmol), DBSA (0.5 mmol), water 10 mL, reaction temperature 25-27°C, irradiation frequency 25 kHz. 2a was achieved in 94% yield within 2h. The other seven amidinohydrazones were obtained in 84-94% yield within 2-3h under the same conditions. Compared to the method involving catalysis by hydrochloric acid in refluxing EtOH, the advantages of present procedure are milder conditions, shorter reaction times, higher yields, and environmental friendly conditions, which make it a useful strategy for the synthesis of analogues.
Green Formation of Novel Pyridinyltriazole-Salicylidene Schiff Bases
Curr Org Synth 2019;16(2):309-313.PMID:31975681DOI:10.2174/1570179416666181207145951.
Aim and objective: In this work, water was used as solvent for the eco-friendly synthesis of imines under microwave irradiation. In the first step of the study, 5-pyridinyl-3-amino-1,2,4-triazole hydrochlorides were synthesized in the reaction of amino guanidine hydrochloride with different pyridine carboxylic acids under acid catalysis. A green method for 5-pyridinyl-3-amino-1,2,4-triazoles was developed with the assistance of microwave synthesis. In the second step, the eco-friendly synthesis of imines was achieved by reacting 5- pyridinyl-2H-1,2,4-triazol-3-amine hydrochlorides with salicylic aldehyde derivatives to produce 2-(5- pyridinyl-2H-1,2,4-triazol-3-ylimino)methyl)phenol imines. Materials and methods: Microwave experiments were done using a monomode Anton Paar Monowave 300 microwave reactor (2.45 GHz). Reaction temperatures were monitored by an IR sensor. Microwave experiments were carried out in sealed microwave process vials G10 with maximum reaction volume of 10 mL. Results: When alternative methods were used, it was impossible to obtain good yields from ethanol. Nevertheless, the use of water was successful for this reaction. After 1-h microwave irritation, a yellow solid was obtained in 82% yield. Conclusion: In this work an eco-friendly protocol for the synthesis of Schiff bases from 5-(pyridin-2-, 3- or 4- yl)-3-amino-1,2,4-triazoles and substituted salicylic aldehydes in water under microwave irradiation was developed. Under the found conditions the high yields for the products were achieved at short reaction time and with an easy isolation procedure.
Reaction of 3-acetonyl-5-cyano-1,2,4-thiadiazole with phenylhydrazine hydrochlorides: indolization and phenylpyrazolation
Chem Pharm Bull (Tokyo) 2000 Jan;48(1):160-2.PMID:10705497DOI:10.1248/cpb.48.160.
Treatment of 3-acetonyl-5-cyano-1,2,4-thiadiazole (1) with 4-methyl or 4-methoxyphenylhydrazine hydrochloride provided 5-cyano-3-(2,5-dimethylindol-3-yl)-1,2,4-thiadiazole (2) or 5-cyano-3-(5-methoxy-2-methylindol-3-yl)-1,2,4-thiadiazole (3) as the sole product, respectively. In contrast, treatment of 1 with phenylhydrazine hydrochloride resulted in the formation of 5-cyano-3-(2-methylindol-3-yl)-1,2,4-thiadiazole (4) and the unexpected 5-cyano-3-(3,5-dimethyl-1-phenylpyrazol-4-yl)-1,2,4-thiadiazole (5). In a similar manner, when 1 was treated with 4-chlorophenylhydrazine hydrochloride, indolization was suppressed by phenylpyrazolation giving rise to 5-cyano-3-(5-chloro-2-methylindol-3-yl)-1,2,4-thiadiazole (6) and 5-cyano-3-[1-(4-chlorophenyl)-3,5-dimethylpyrazol-4-yl]-1,2,4-thia diazole (7). The reaction mechanism is discussed. Compounds 4, 5 and 6 exhibited weak antimicrobial activity against Helicobacter pylori.
Antiparasitic activities of new lawsone Mannich bases
Arch Pharm (Weinheim) 2019 Nov;352(11):e1900128.PMID:31536649DOI:10.1002/ardp.201900128.
A series of new lawsone Mannich bases derived from salicylaldehydes or nitrofurfural were prepared and tested for their activities against Leishmania major, Toxoplasma gondii, and Trypanosoma brucei brucei parasites. The hydrochloride salts 5a and 6a of the Mannich bases 2a and 3a, derived from unsubstituted salicylaldehyde and long-chained alkyl amines, were selectively and strongly active against T. gondii cells and appear to be new promising drug candidates against this parasite. Compound 6a showed an even higher activity against T. gondii than the known lawsone Mannich base 1b. Compound 4a, derived from salicylaldehyde and 2-methylaminopyridine, was also distinctly active against T. gondii cells. The derivatives 3a (salicyl derivative), 3b (3,5-dichloro-2-hydroxyphenyl derivative), and 3d (5-nitrofuranyl derivative) as well as the hydrochlorides 6a and 6b were also efficacious against T. b. brucei cells with compounds 3a and 3b being more selective for T. b. brucei over Vero cells when compared with the known control compound 1b. The derivatives 5a, 5c, 6a, and 6c proved to be up to five times more active than 1b against L. major promastigotes and up to four times more efficacious against L. major amastigotes.