Home>>Signaling Pathways>> Cardiovascular>> Vasoconstriction>>14,15-EE-5(Z)-E

14,15-EE-5(Z)-E Sale

(Synonyms: 14,15Epoxyeicosa5(Z)enoic Acid) 目录号 : GC40424

An antagonist of EDHF-mediated vasodilation

14,15-EE-5(Z)-E Chemical Structure

Cas No.:519038-92-7

规格 价格 库存 购买数量
25μg
¥599.00
现货
50μg
¥1,147.00
现货
100μg
¥2,159.00
现货
500μg
¥9,593.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Epoxyeicosatrienoic acids (EETs), such as 11(12)-EET and 14(15)-EET, are cytochrome P450 metabolites of arachidonic acid that have been identified as endothelium-derived hyperpolarizing factors with vasodilator activity. 14,15-EE-5(Z)-E is a structural analog of 14,15-epoxyeicosatrienoic acids (14,15-EET) that antagonizes EET-induced relaxation of vascular smooth muscle. Relaxation of U46619-constricted bovine arteries by 14,15-EET could be inhibited approximately 80% by 14,15-EE-5(Z)-E at a concentration of 10 µM. 14,15-EE-5(Z)-E does not appear to antagonize nitric oxide- or iloprost-mediated vascular relaxation.

Chemical Properties

Cas No. 519038-92-7 SDF
别名 14,15Epoxyeicosa5(Z)enoic Acid
Canonical SMILES CCCCC[C@H]1O[C@H]1CCCCCCC/C=C\CCCC(=O)O
分子式 C20H36O3 分子量 324.5
溶解度 DMF: 10 mg/ml,DMSO: 10 mg/ml,Ethanol: 50 mg/ml,PBS (pH 7.2): 0.5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.0817 mL 15.4083 mL 30.8166 mL
5 mM 0.6163 mL 3.0817 mL 6.1633 mL
10 mM 0.3082 mL 1.5408 mL 3.0817 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Role of Epoxyeicosatrienoic Acids in Acetylcholine-Induced Dilation of Rat Retinal Arterioles in Vivo

Biol Pharm Bull 2021;44(1):82-87.PMID:33390554DOI:10.1248/bpb.b20-00635.

CYP epoxygenase-derived epoxyeicosatrienoic acids (EETs) contribute to endothelium-dependent hyperpolarization (EDH)-related dilation in multiple vascular beds. The present study aimed to determine the role of EETs in the acetylcholine (ACh)-induced dilation of retinal arterioles in rats in vivo. The vasodilator responses were assessed by determining the change in diameter of the retinal arterioles on images of the ocular fundus. The intravitreal injection of 17-octadecynoic acid (1.4 nmol/eye), an inhibitor of CYP epoxygenase, and 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EE-5(Z)-E; 2 nmol/eye), an antagonist of EETs, reduced the ACh (0.3-10 µg/kg/min)-induced dilation of the retinal arterioles. The EET antagonist attenuated the vasodilator response to ACh under blockade of nitric oxide (NO) synthases and cyclooxygenases with NG-nitro-L-arginine methyl ester (30 mg/kg) plus indomethacin (5 mg/kg). Intravitreal injection of 14,15-EET (0.5 nmol/eye) dilated retinal arterioles and the response was prevented by iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (BKCa) channels (20 pmol/eye). These results suggest that ACh stimulates the production of EETs, thereby dilating the retinal arterioles via activation of BKCa channels. CYP epoxygenase-derived EETs may be involved in the EDH-related component of the ACh-induced dilation of the retinal arterioles.

Complex interrelationships between nitro-alkene-dependent inhibition of soluble epoxide hydrolase, inflammation and tumor growth

Redox Biol 2020 Jan;29:101405.PMID:31926628DOI:10.1016/j.redox.2019.101405.

Nitro-oleate (10-nitro-octadec-9-enoic acid), which inhibits soluble epoxide hydrolase (sEH) by covalently adducting to C521, increases the abundance of epoxyeicosatrienoic acids (EETs) that can be health promoting, for example by lowering blood pressure or their anti-inflammatory actions. However, perhaps consistent with their impact on angiogenesis, increases in EETs may exacerbate progression of some cancers. To assess this, Lewis lung carcinoma (LLc1) cells were exposed to oleate or nitro-oleate, with the latter inhibiting the hydrolase and increasing their proliferation and migration in vitro. The enhanced proliferation induced by nitro-oleate was EET-dependent, being attenuated by the ETT-receptor antagonist 14,15-EE-5(Z)-E. LLc1 cells were engineered to stably overexpress wild-type or C521S sEH, with the latter exhibiting resistance to nitro-oleate-dependent hydrolase inhibition and the associated stimulation of tumor growth in vitro or in vivo. Nitro-oleate also increased migration in endothelial cells isolated from wild-type (WT) mice, but not those from C521S sEH knock-in (KI) transgenic mice genetically modified to render the hydrolase electrophile-resistant. These observations were consistent with nitro-oleate promoting cancer progression, and so the impact of this electrophile was examined in vivo again, but this time comparing growth of LLc1 cells expressing constitutive levels of wild-type hydrolase when implanted into WT or KI mice. Nitro-oleate inhibited tumor sEH (P < 0.05), with a trend for elevated plasma 11(12)-EET/DHET and 8(9)EET/DHET (dihydroxyeicosatrienoic acid) ratios when administered to WT, but not KI, mice. Although in vitro studies with LLc1 cells supported a role for nitro-oleate in cancer cell proliferation, it failed to significantly stimulate tumor growth in WT mice implanted with the same LLc1 cells in vivo, perhaps due to its well-established anti-inflammatory actions. Indeed, pro-inflammatory cytokines were significantly down-regulated in nitro-oleate treated WT mice, potentially countering any impact of the concomitant inhibition of sEH.