Home>>Signaling Pathways>> Proteases>> Lipoxygenase>>15(R)-Lipoxin A4

15(R)-Lipoxin A4

(Synonyms: AT-Lipoxin A4) 目录号 : GC41415

An aspirin-triggered lipoxin

15(R)-Lipoxin A4 Chemical Structure

Cas No.:171030-11-8

规格 价格 库存
25μg
¥2,827.00
待询
50μg
¥5,380.00
待询
100μg
¥10,175.00
待询
250μg
¥22,613.00
待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Lipid-derived lipoxins are produced at the site of vascular and mucosal inflammation where they down-regulate polymorphonuclear leukocyte recruitment and function. 15(R)-Lipoxin A4 (15(R)-LXA4) is derived from the aspirin-triggered formation of 15(R)-HETE from arachidonic acid. [1] [2]  15(R)-LXA4 inhibits LTB4-induced chemotaxis, adherence, and transmigration of neutrophils with twice the potency of LXA4 demonstrating activity in the nM range.[2] [3] The anti-inflammatory effects of aspirin may be ascribed in part to the ability of 15(R)-LXA4 to regulate leukocyte function.[4] 15(R)-LXA4 is reported to promote resolution of inflammation in LPS-treated stromal cells derived from intermediate-stage diseased supraspinatus tendons as evidenced by increased expression of the STAT-6 pathway target genes, ALOX15 and CD206.[5]

Reference:
[1]. Clària, J., Lee, M.H., and Serhan, C.N. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation. Molecular Medicine 2, 583-596 (1996).
[2]. Clària, J., and Serhan, C.N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. PNAS USA 92(21), 9475-9479 (1995).
[3]. Fierro, I.M., Colgan, S.P., Bernasconi, G., et al. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration: Comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J. Immunol. 170(5), 2688-2694 (2003).
[4]. Chiang, N., Bermudez, E.A., Ridker, P.M., et al. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proceedings of the National Academy of Sciences of the United States of America 101(42), 15178-15183 (2004).
[5]. Dakin, S.G., Martinez, F.O., Yapp, C., et al. Inflammation activation and resolution in human tendon disease. Sci.Transl.Med. 7(311), (2015).

Chemical Properties

Cas No. 171030-11-8 SDF
别名 AT-Lipoxin A4
化学名 5(S),6(R),15(R)-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid
Canonical SMILES CCCCC[C@@H](O)\C=C/C=C/C=C\C=C/[C@@H](O)C(O)CCCC(=O)O
分子式 C20H32O5 分子量 352.5
溶解度 DMF: 50 mg/ml; Ethanol: 50 mg/ml; PBS (pH 7.2): 1 mg/ml 储存条件 Store at -80°C,protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8369 mL 14.1844 mL 28.3688 mL
5 mM 0.5674 mL 2.8369 mL 5.6738 mL
10 mM 0.2837 mL 1.4184 mL 2.8369 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Significant Improvement Selected Mediators of Inflammation in Phenotypes of Women with PCOS after Reduction and Low GI Diet

Mediators Inflamm 2017;2017:5489523.PMID:28655971DOI:10.1155/2017/5489523.

Many researchers suggest an increased risk of atherosclerosis in women with polycystic ovary syndrome. In the available literature, there are no studies on the mediators of inflammation in women with PCOS, especially after dietary intervention. Eicosanoids (HETE and HODE) were compared between the biochemical phenotypes of women with PCOS (normal and high androgens) and after the 3-month reduction diet. Eicosanoid profiles (9(S)-HODE, 13(S)-HODE, 5(S)-HETE, 12(S)-HETE, 15(S)-HETE, 5(S)-oxoETE, 16(R)-HETE, 16(S)-HETE and 5(S), 6(R)-lipoxin A4, 5(S), 6(R), 15(R)-Lipoxin A4) were extracted from 0.5 ml of plasma using solid-phase extraction RP-18 SPE columns. The HPLC separations were performed on a 1260 liquid chromatograph. No significant differences were found in the concentration of analysed eicosanoids in phenotypes of women with PCOS. These women, however, have significantly lower concentration of inflammatory mediators than potentially healthy women from the control group. Dietary intervention leads to a significant (p < 0.01) increase in the synthesis of proinflammatory mediators, reaching similar levels as in the control group. The development of inflammatory reaction in both phenotypes of women with PCOS is similar. The pathways for synthesis of proinflammatory mediators in women with PCOS are dormant, but can be stimulated through a reduction diet. Three-month period of lifestyle change may be too short to stimulate the pathways inhibiting inflammatory process.