Home>>Signaling Pathways>> Proteases>> Lipoxygenase>>17(S)-HpDHA

17(S)-HpDHA Sale

(Synonyms: 17(S)hydroperoxy Docosahexaenoic Acid, 17(S)HpDoHE) 目录号 : GC40975

A mono-oxygenation product of DHA

17(S)-HpDHA Chemical Structure

Cas No.:123673-33-6

规格 价格 库存
25μg
¥1,781.00
待询
50μg
¥3,392.00
待询
100μg
¥6,408.00
待询
250μg
¥13,362.00
待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

17(S)-HpDHA is a mono-oxygenation product of docosahexaenoic acid in human whole blood, human leukocytes, human glial cells, and mouse brain. 17(S)-HpDHA is generally reduced to 17(S)-HDHA , a compound that serves as a precursor to 17(S)-resolvins. 17(S)-HDHA has been shown to inhibit TNF-α-induced interleukin-1β expression in human glioma cells and inhibit TNF-α-induced leukocyte trafficking to the murine air pouch.

Chemical Properties

Cas No. 123673-33-6 SDF
别名 17(S)hydroperoxy Docosahexaenoic Acid, 17(S)HpDoHE
Canonical SMILES CC\C=C/C[C@H](OO)/C=C/C=C\C\C=C/C\C=C/C\C=C/CCC(O)=O
分子式 C22H32O4 分子量 360.5
溶解度 DMF: Miscible,DMSO: Miscible,Ethanol: Miscible,PBS (pH 7.2): 0.8 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7739 mL 13.8696 mL 27.7393 mL
5 mM 0.5548 mL 2.7739 mL 5.5479 mL
10 mM 0.2774 mL 1.387 mL 2.7739 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Dihydroxydocosahexaenoic acids of the neuroprotectin D family: synthesis, structure, and inhibition of human 5-lipoxygenase

J Lipid Res 2006 Nov;47(11):2462-74.PMID:16899822DOI:10.1194/jlr.M600280-JLR200.

During aerobic oxidation of docosahexaenoic acid (DHA), soybean lipoxygenase (sLOX) has been shown to form 7,17(S)-dihydro(pero)xydocosahexaenoic acid [7,17(S)-diH(P)DHA] along with its previously described positional isomer, 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid. 7,17(S)-diH(P)DHA was also obtained via sLOX-catalyzed oxidation of either 17(S)-hydroperoxydocosahexaenoic acid [17(S)-HpDHA] or 17(S)-hydroxydocosahexaenoic acid [17(S)-HDHA]. The structures of the products were elucidated by normal-phase, reverse-phase, and chiral-phase HPLC analyses and by ultraviolet, NMR, and tandem mass spectroscopy and GC-MS. 7,17(S)-diH(P)DHA was shown to have 4Z,8E,10Z,13Z,15E,19Z geometry of the double bonds. In addition, a compound apparently identical to the sLOX-derived 7,17(S)-diH(P)DHA was produced by another enzyme, potato tuber LOX, in the reactions of oxygenation of either 17(S)-HpDHA or 17(S)-HDHA. All of the dihydroxydocosahexaenoic acids (diHDHAs) formed by either of the enzymes were clearly produced through double lipoxygenation of the corresponding substrate. 7,17(S)-diHDHA inhibited human recombinant 5-lipoxygenase in the reaction of arachidonic acid (AA) oxidation. In standard conditions with 100 microM AA as substrate, the IC(50) value for 7,17(S)-diHDHA was found to be 7 microM, whereas IC(50) for 10,17(S)-DiHDHA was 15 microM. Similar inhibition by the diHDHAs was observed with sLOX, a quintessential 15LOX, although the strongest inhibition was produced by 10,17(S)-diHDHA (IC(50) = 4 microM). Inhibition of sLOX by 7,17(S)-diHDHA was slightly less potent, with an IC(50) value of 9 microM. These findings suggest that 7,17(S)-diHDHA along with its 10,17(S) counterpart might have anti-inflammatory and anticancer activities, which could be exerted, at least in part, through direct inhibition of 5LOX and 15LOX.

Novel oxylipins formed from docosahexaenoic acid by potato lipoxygenase--10(S)-hydroxydocosahexaenoic acid and 10,20-dihydroxydocosahexaenoic acid

Lipids 2005 Mar;40(3):249-57.PMID:15957250DOI:10.1007/s11745-005-1379-z.

Potato tuber lipoxygenase (ptLOX) has been shown to catalyze the aerobic formation of at least four major oxygenated derivatives of DHA. Two of the products--7,17(S)- and 10,17(S)-dihydro(pero)xy-DHA [7,17- and 10,17-diH(P)DHA]--were formed from soybean 15-LOX-derived 17(S)-hydro(pero)xy-DHA [17(S)-H(P)DHA], whereas two novel oxylipin compounds--10(S)-hydro(pero)xy-DHA and 10,20-dihydro(pero)xy-DHA [10(S)-H(P)DHA and 10,20-diH(P)DHA, respectively]--were the major direct products of DHA oxidation by ptLOX. The reactions proceeded relatively slowly but could be stimulated by catalytic amounts of SDS. Micromolar concentrations of 10(S)-HPDHA effectively abolished the kinetic lag period of ptLOX activation. Enzymatic activity with DHA or 17(S)-HpDHA as substrate was about 8% of that with linoleic acid--a standard natural ptLOX substrate--whereas 17(S)-HDHA was converted at a rate of approximately 1%. The enzyme was relatively unstable and quickly inactivated during the reaction with DHA on with 17(S)-HpDHA (first-order kinetic constant of inactivation kin = 1.5 +/- 0.3 min(-1)), but not with 17(S)-HDHA. Both 7,17- and 10,20-diH(P)DHA were clearly products of double oxygenation catalyzed by soybean 15-LOX and/or ptLOX. Our observation that ptLOX could convert 17-HDHA to 10,17-diH(P)DHA indicates that this dihydroxylated derivative of DHA also can be formed via a double lipoxygenation mechanism.