19(S)-HETE
(Synonyms: 19(S)-Hydroxyeicosatetraenoic Acid) 目录号 : GC40458Potent vasodilator of renal preglomerular vessels
Cas No.:115461-40-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
19-HETE is one of the major cytochrome P450 (CYP450) metabolites of arachidonic acid that is released from the kidney in response to angiotensin II. When formed by the CYP2E1 isoform, 19-HETE is composed of 70% and 30% of the (S) and (R) stereoisomers, respectively. Both 19(S)- and 19(R)-HETE are potent vasodilators of renal preglomerular vessels. 19(S)-HETE stimulates both renal sodium-potassium ATPase and volume absorption in the rabbit proximal straight tubule.
Cas No. | 115461-40-0 | SDF | |
别名 | 19(S)-Hydroxyeicosatetraenoic Acid | ||
Canonical SMILES | CC(O)CCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O | ||
分子式 | C20H32O3 | 分子量 | 320.5 |
溶解度 | DMF: 20 mg/ml,DMSO: 20 mg/ml,Ethanol: 50 mg/ml,PBS (pH 7.2): 0.5 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.1201 mL | 15.6006 mL | 31.2012 mL |
5 mM | 0.624 mL | 3.1201 mL | 6.2402 mL |
10 mM | 0.312 mL | 1.5601 mL | 3.1201 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor
PLoS One 2016 Sep 23;11(9):e0163633.PMID:27662627DOI:10.1371/journal.pone.0163633.
19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists.
Effects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport
Am J Physiol Renal Physiol 2000 Jun;278(6):F949-53.PMID:10836982DOI:10.1152/ajprenal.2000.278.6.F949.
The kidney has the highest abundance of cytochrome P-450 of all extrahepatic organs. Within the kidney, the highest concentration of cytochrome P-450 is found in the proximal tubule. Whether 20- or 19(S)-hydroxyeicosatetraenoic acid (HETE), the major P-450 metabolites of arachidonic acid in the proximal tubule, affect transport in this segment has not been previously investigated. We examined the direct effects of 20- and 19(S)-HETE on volume absorption (J(v)) in the rabbit proximal straight tubule (PST). Production of 20-HETE by rabbit PST was demonstrated by incubating microdissected tubules with [(3)H]arachidonic acid and separating the lipid extract by HPLC. There was significant conversion of [(3)H]arachidonic acid to 20-HETE in control tubules that was inhibited by 10(-5) M N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS). Addition of exogenous 20-HETE had no effect on PST volume transport. However, inhibition of endogenous production of 20-HETE using DDMS stimulated transport. In the presence of DDMS, 20-HETE inhibited PST J(v). 19(S)-HETE in the bathing solution stimulated PST J(v) alone and in the presence of DDMS. Thus omega- and omega-1-hydroxylase products of arachidonic acid have direct effects on PST transport. Endogenous production of 20-HETE may play a role in tonic suppression of transport and may therefore be an endogenous regulator of transport in the proximal tubule.
S- Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy
Drug Metab Dispos 2018 Aug;46(8):1157-1168.PMID:29880629DOI:10.1124/dmd.118.082073.
We had recently demonstrated that the racemic mixture of 19-hydroxyeicosatetraenoic acid (19-HETE) protects against angiotensin II (Ang II)-induced cardiac hypertrophy. Therefore, the purpose of this study was to investigate whether the R- or S-enantiomer of 19-HETE confers cardioprotection against Ang II-induced cellular hypertrophy in RL-14 and H9c2 cells. Both cell lines were treated with vehicle or 10 μM Ang II in the absence and presence of 20 μM 19(R)-HETE or 19(S)-HETE for 24 hours. Thereafter, the level of midchain HETEs was determined using liquid chromatography-mass spectrometry. Gene- and protein-expression levels were measured using real-time polymerase chain reaction and Western blot analysis, respectively. The results showed that both 19(R)-HETE and 19(S)-HETE significantly decreased the metabolite formation rate of midchain HETEs, namely 8-, 9-, 12-, and 15-HETE, compared with control group, whereas the level of 5-HETE was selectively decreased by S-enantiomer. Moreover, both 19(R)-HETE and 19(S)-HETE significantly inhibited the catalytic activity of CYP1B1 and decreased the protein expression of 5- and 12-lipoxygenase (LOX) as well as cyclo-oxygenase-2 (COX-2). Notably, the decrease in 15-LOX protein expression was only mediated by 19(S)-HETE. Interestingly, both enantiomers protected against Ang II-induced cellular hypertrophy, as evidenced by a significant decrease in mRNA expression of β/α-myosin heavy chain ratio, atrial natriuretic peptide, and interleukins 6 and 8. Our data demonstrated that S-enantiomer of 19-HETE preferentially protected against Ang II-induced cellular hypertrophy by decreasing the level of midchain HETEs, inhibiting catalytic activity of CYP1B1, decreasing protein expression of LOX and COX-2 enzymes, and decreasing mRNA expression of IL-6 and IL-8.
Novel Synthetic Analogues of 19(S/R)-Hydroxyeicosatetraenoic Acid Exhibit Noncompetitive Inhibitory Effect on the Activity of Cytochrome P450 1A1 and 1B1
Eur J Drug Metab Pharmacokinet 2021 Sep;46(5):613-624.PMID:34235626DOI:10.1007/s13318-021-00699-9.
Background and objectives: Cytochrome P450 (CYP) 1A1 and CYP1B1 enzymes play a significant role in the pathogenesis of cancer and cardiovascular diseases (CVD) such as cardiac hypertrophy and heart failure. Previously, we have demonstrated that R- and S-enantiomers of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid endogenous metabolite, enantioselectively inhibit CYP1B1. The current study was conducted to test the possible inhibitory effect of novel synthetic analogues of R- and S-enantiomers of 19-HETE on the activity of CYP1A1, CYP1A2, and CYP1B1. Methods: The O-dealkylation rate of 7-ethoxyresorufin (EROD) by recombinant human CYP1A1 and CYP1B1, in addition to the O-dealkylation rate of 7-methoxyresorufin (MROD) by recombinant human CYP1A2, were measured in the absence and presence of varying concentrations (0-40 nM) of the synthetic analogues of 19(R)- and 19(S)-HETE. Also, the possible inhibitory effect of both analogues on the catalytic activity of EROD and MROD, using RL-14 cells and human liver microsomes, was assessed. Results: The results showed that both synthetic analogues of 19(R)- and 19(S)-HETE exhibited direct inhibitory effects on the activity of CYP1A1 and CYP1B1, while they had no significant effect on CYP1A2 activity. Nonlinear regression analysis and comparisons showed that the mode of inhibition for both analogues is noncompetitive inhibition of CYP1A1 and CYP1B1 enzymes. Also, nonlinear regression analysis and Dixon plots showed that the R- and S-analogues have KI values of 15.7 ± 4.4 and 6.1 ± 1.5 nM for CYP1A1 and 26.1 ± 2.9 and 9.1 ± 1.8 nM for CYP1B1, respectively. Moreover, both analogues were able to inhibit EROD and MROD activities in a cell-based assay and human liver microsomes. Conclusions: Therefore, the synthetic analogues of 19-HETE could be considered as a novel therapeutic approach in the treatment of cancer and CVD.
Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1
J Biol Chem 1993 Jun 15;268(17):12912-8.PMID:8509425doi
When reconstituted with cytochrome b5 and NADPH cytochrome P450 oxidoreductase, cytochrome P450 2E1 metabolized lauric, stearic, oleic, linoleic, linolenic, and arachidonic acid to multiple metabolites. Two major metabolites, accounting for 78% of the total metabolism, were produced with arachidonic acid. The Vmax for total metabolite formation from arachidonic acid was 5 nmol/min/nmol P450 with an apparent Km of 62 microM. Gas chromatography-mass spectrometry analysis identified the two major metabolites as monohydroxylated eicosatetraenoic acids (HETEs). The major HETE was 19-hydroxyeicosatetraenoic acid (19-HETE) and comprised 46% of the total metabolite produced. The second metabolite was the omega-2 hydroxylated metabolite (18-HETE) and comprised 32% of the total product formed. Chiral analysis demonstrated that 19-HETE was 70% 19(S)-HETE and 30% 19(R)-HETE. In contrast, 18-HETE was essentially 100% R isomer. Approximately 18% of the total metabolite produced from arachidonic acid coeluted with epoxyeicosatrienoic acid (EET) standards. The EET metabolites were 56.4% 14,15-EET and 43.6% as a mixture of 11,12-EET and 8,9-EET. 5,6-EET was not detected. Anti-P450 2E1 IgG inhibited arachidonic acid metabolism by renal and hepatic microsomes prepared from acetone-treated rabbits. With renal cortex microsomes, the formation of 18-HETE and 19-HETE was inhibited 67 and 25%, respectively, by the antibody. Liver microsomal formation of 18-HETE was inhibited by 87% and 19-HETE by 70%. Thus, under conditions where cytochrome P450 2E1 is induced, the enzyme could contribute significantly to the formation of the omega-1 and omega-2 hydroxylated metabolites of arachidonic acid.