1G244
目录号 : GC392961G244 是一种有效的 DPP8/9 抑制剂,IC50 分别为 12 nM 和 84 nM,但不抑制 DPPIV 和 DPPII。1G244 可诱导多发性骨髓瘤细胞凋亡,并具有抗骨髓瘤作用。
Cas No.:847928-32-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
1G244 is a potent DPP8/9 inhibitor with IC50s of 12 nM and 84 nM, respectively. 1G244 does not inhibit DPPIV and DPPII. 1G244 induces apoptosis in multiple myeloma cells and has anti-myeloma effects[1][2].
[1]. Sato T, et al. DPP8 is a novel therapeutic target for multiple myeloma. Sci Rep. 2019 Dec 2;9(1):18094. [2]. Leen Heirbaut, et al. Probing for improved selectivity with dipeptidederived inhibitors of dipeptidyl peptidases 8 and 9: the impact of P1-variation. MedChemComm. 2016, 7.
Cas No. | 847928-32-9 | SDF | |
Canonical SMILES | O=C(N1CC2=C(C=CC=C2)C1)[C@@H](N)CC(N3CCN(C(C4=CC=C(F)C=C4)C5=CC=C(F)C=C5)CC3)=O | ||
分子式 | C29H30F2N4O2 | 分子量 | 504.57 |
溶解度 | DMSO: 250 mg/mL (495.47 mM) | 储存条件 | 4°C, away from moisture and light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.9819 mL | 9.9094 mL | 19.8189 mL |
5 mM | 0.3964 mL | 1.9819 mL | 3.9638 mL |
10 mM | 0.1982 mL | 0.9909 mL | 1.9819 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death
Eur J Pharmacol 2023 Apr 5;944:175566.PMID:36739078DOI:10.1016/j.ejphar.2023.175566.
Background: Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. Methods: The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. Results: 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. Conclusions: In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.
Biochemistry, pharmacokinetics, and toxicology of a potent and selective DPP8/9 inhibitor
Biochem Pharmacol 2009 Jul 15;78(2):203-10.PMID:19439267DOI:10.1016/j.bcp.2009.03.032.
DPP-IV (EC 3.4.14.5) is a validated drug target for human type II diabetes. DPP-IV inhibitors without DPP8/9 inhibitory activity have been sought because a possible association has been reported between a "DPP8/9 inhibitor" and severe toxicity in animals. However, at present, it is not known whether the observed toxicity is associated with DPP8/9 inhibition, or an off-target effect induced by the compound. We investigated whether the inhibition of DPP8/9 is the cause of the severe toxicity in animals using a very potent and selective DPP8/9 inhibitor with different pharmacophore, 1G244. By Ki measurement, 1G244 is 15- and 8-fold more potent against DPP8 and DPP9, respectively, than the "DPP8/9 inhibitor". Strikingly, the "DPP8/9 inhibitor" does not penetrate the plasma membrane but remains outside the cells, whereas 1G244 readily enters the cells, even at low doses. By repeatedly exposing Sprague-Dawley rats to 1G244 by intravenous injection for a period of 14 days, we observed no significant toxicological symptoms associated with 1G244. Blood and serum chemistry parameters were all within the normal ranges for the treated animals. Because of the high potency, good membrane penetration and adequate tissue distribution of 1G244, the mild symptoms observed are probably associated with DPP8/9 inhibition.
DPP8 is a novel therapeutic target for multiple myeloma
Sci Rep 2019 Dec 2;9(1):18094.PMID:31792328DOI:10.1038/s41598-019-54695-w.
Dipeptidyl peptidases (DPPs) are proteolytic enzymes that are ideal therapeutic targets in human diseases. Indeed, DPP4 inhibitors are widely used in clinical practice as anti-diabetic agents. In this paper, we show that DPP4 inhibitors also induced cell death in multiple human myeloma cells. Among five DPP4 inhibitors, only two of them, vildagliptin and saxagliptin, exhibited apparent cytotoxic effects on myeloma cell lines, without any difference in suppression of DPP4 activity. As these two DPP4 inhibitors are known to have off-target effects against DPP8/9, we employed the specific DPP8/9 inhibitor 1G244. 1G244 demonstrated anti-myeloma effects on several cell lines and CD138+ cells from patients as well as in murine xenograft model. Through siRNA silencing approach, we further confirmed that DPP8 but not DPP9 is a key molecule in inducing cell death induced by DPP8/9 inhibition. In fact, the expression of DPP8 in CD38+ cells from myeloma patients was higher than that of healthy volunteers. DPP8/9 inhibition induced apoptosis, as evidenced by activated form of PARP, caspases-3 and was suppressed by the pan-caspase inhibitor Z-VAD-FMK. Taken together, these results indicate that DPP8 is a novel therapeutic target for myeloma treatment.
Inhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation
Sci Rep 2015 Aug 5;5:12348.PMID:26242871DOI:10.1038/srep12348.
Adipocytes are the primary cells in adipose tissue, and adipocyte dysfunction causes lipodystrophy, obesity and diabetes. The dipeptidyl peptidase (DPP) 4 family includes four enzymes, DPP4, DPP8, DPP9 and fibroblast activation protein (FAP). DPP4 family inhibitors have been used for the treatment of type 2 diabetes patients, but their role in adipocyte formation are poorly understood. Here we demonstrate that the DPP8/9 selective inhibitor 1G244 blocks adipogenesis in preadipocyte 3T3-L1 and 3T3-F422A, while DPP4 and FAP inhibitors have no effect. In addition, knockdown of DPP8 or DPP9 significantly impairs adipocyte differentiation in preadipocytes. We further uncovered that blocking the expression or activities of DPP8 and DPP9 attenuates PPARγ2 induction during preadipocyte differentiation. Addition of PPARγ agonist thiazolidinediones (TZDs), or ectopic expression of PPARγ2, is able to rescue the adipogenic defect caused by DPP8/9 inhibition in preadipocytes. These results indicate the importance of DPP8 and DPP9 on adipogenesis.
Dipeptidyl peptidase 9 (DPP9) in human skin cells
Immunobiology 2017 Feb;222(2):327-342.PMID:27682012DOI:10.1016/j.imbio.2016.09.007.
Background: Dipeptidyl peptidase 9 (DPP9) is a relatively new member of the DPPIV family of prolyl dipeptidases which is ubiquitously expressed. Its role in regulation of immune responses and proliferation of epithelial carcinoma cells was reported. There is no data on possible role of DPP9 expressed in skin epithelial cells (keratinocytes) and in dermal fibroblasts. Materials and methods: Transcriptional and protein expression of DPP9 and DPPIV was examined in fibroblasts and keratinocytes isolated from normal human skin. Localization of DPP9 and its sub-localization in Golgi were determined by immunocytochemistry staining. DPPIV-like enzyme activity was determined in cell lysates and in isolated cell fractions containing membranes (M), cytosol (C) and content of organelles/endosomes/vesicles (V). Relative contribution of DPPIV and DPP8/9 enzyme activity in these fractions was determined by using selective inhibitors: sitagliptin (selective for DPPIV) and 1G244 (selective for DPP9 and a highly homologous DPP8). Possible roles of DPP8/9 via its enzyme activity were analysed by assessment of survival and proliferative capacity of fibroblasts and HaCaT cells of keratinocyte origin in the presence of the inhibitors. Possible role of DPP9 in cell migration and/or adhesion was analysed in fibroblasts and HaCaT cells after DPP9 gene silencing. Results: Fibroblasts and keratinocytes exerted comparable level of DPP9 both at transcriptional and protein level. Fibroblasts strongly expressed DPPIV, whereas in keratinocytes DPPIV expression was low. DPP9 expression was found in cytosol and in perinuclear area of some fibroblasts, or in scattered pattern of keratinocytes, as well as in nuclei of some cells. Only low level of DPP9 sub-localization within Golgi was observed in fibroblasts and keratinocytes. DPPIV-like enzyme activity was about 5 times higher in lysates of fibroblasts than of HaCaT cells. In fibroblasts DPPIV-like enzyme activity was mainly (65%) found in the fraction containing cell membranes (M) and was predominantly (86.9%) due to DPPIV. In contrast, in HaCaT cells the DPPIV-like enzyme activity was mainly (84.2%) found in cytosol (C) and was predominantly (95.6%) due to DPP8/9. Survival and the proliferative capacity were significantly diminished in the presence of 10μM 1G244, both in fibroblasts and in HaCaT cells, suggesting possible role of DPP8/9 enzyme activity in regulation of survival and proliferation of these cells. DPP9 gene silencing resulted in decreased adhesion of fibroblasts, as well as in decreased migration of fibroblasts and HaCaT cells. Accumulation of DPP9 on the edges of plasma membranes of fibroblasts and keratinocytes adhering to surface supports the idea of possible role of DPP9 in cell adhesion. Conclusions: This is the first study showing protein expression, sub-localization and possible biological roles of DPP9 expressed in isolated human skin cells. The data may be relevant for development of new drugs against skin diseases by targeting DPP9 expressed in the skin cells.