Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>2,6-Dibromophenol

2,6-Dibromophenol Sale

(Synonyms: 2,6-二溴苯酚) 目录号 : GC39773

2,6-Dibromophenol 是一种内源性代谢产物。

2,6-Dibromophenol Chemical Structure

Cas No.:608-33-3

规格 价格 库存 购买数量
500mg
¥495.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2,6-Dibromophenol is an endogenous metabolite.

Chemical Properties

Cas No. 608-33-3 SDF
别名 2,6-二溴苯酚
Canonical SMILES OC1=C(Br)C=CC=C1Br
分子式 C6H4Br2O 分子量 251.9
溶解度 DMSO : 100 mg/mL (396.98 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.9698 mL 19.8491 mL 39.6983 mL
5 mM 0.794 mL 3.9698 mL 7.9397 mL
10 mM 0.397 mL 1.9849 mL 3.9698 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Photocatalytic Degradation of 4,4'-Isopropylidenebis(2,6-Dibromophenol) on Sulfur-Doped Nano TiO2

Materials (Basel) 2022 Jan 4;15(1):361.PMID:35009505DOI:10.3390/ma15010361.

In present work, we examine the photocatalytic properties of S-doped TiO2 (S1, S2) compared to bare TiO2 (S0) in present work. The photocatalytic tests were performed in alkaline aqueous solutions (pH = 10) of three differently substituted phenols (phenol (I), 4,4'-isopropylidenebisphenol (II), and 4,4'-isopropylidenebis(2,6-Dibromophenol) (III)). The activity of the catalysts was evaluated by monitoring I, II, III degradation in the reaction mixture. The physicochemical properties (particle size, ζ-potential, Ebg, Eu, E0cb, E0vb, σo, KL) of the catalysts were established, and we demonstrated their influence on degradation reaction kinetics. Substrate degradation rates are consistent with first-order kinetics. The apparent conversion constants of the tested compounds (kapp) in all cases reveal the sulfur-loaded catalyst S2 to show the best photocatalytic activity (for compound I and II S1 and S2 are similarly effective). The different efficiency of photocatalytic degradation I, II and III can be explained by the interactions between the catalyst and the substrate solution. The presence of bromine substituents in the benzene ring additionally allows reduction reactions. The yield of bromide ion release in the degradation reaction III corresponds to the Langmuir constant. The mixed oxidation-reduction degradation mechanism results in higher degradation efficiency. In general, the presence of sulfur atoms in the catalyst network improves the degradation efficiency, but too much sulfur is not desired for the reduction pathway.

[Analysis of 2,4-dibromophenol and 2,6-Dibromophenol in phenolic-smelling flatfish]

Shokuhin Eiseigaku Zasshi 2009 Dec;50(6):292-6.PMID:20065618DOI:10.3358/shokueishi.50.292.

A simple analytical method for dibromophenols (DBPs) in flatfiish was developed. 2,4-DBP and 2,6-DBP were extracted from a sample with acetone and n-hexane, cleaned up by treatment with conc. sulfuric acid and concentrated under a stream of nitrogen gas. The resulting extract was subjected to GC/MS. The recoveries of 2,4-DBP and 2,6-DBP were 89.4-96.5% and 81.4-86.2%, respectively, indicating that this method is useful for analysis of 2,4-DBP and 2,6-DBP. In the phenolic-smelling flatfish, 2,6-DBP was detected at the levels of 0.10 microg/g and 0.01 microg/g in skin and muscle, respectively, and 2,4-DBP was detected at the level of 0.02 microg/g in skin.

Photocatalytic Degradation of 4,4'-Isopropylidenebis(2,6-Dibromophenol) on Magnetite Catalysts vs. Ozonolysis Method: Process Efficiency and Toxicity Assessment of Disinfection By-Products

Int J Mol Sci 2022 Mar 22;23(7):3438.PMID:35408795DOI:10.3390/ijms23073438.

Flame retardants have attracted growing environmental concern. Recently, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, living organisms' exposure, and toxicity. The presented studies include the degradation of 4,4'-isopropylidenebis(2,6-Dibromophenol) (TBBPA) by ozonolysis and photocatalysis. In the photocatalytic process, nano- and micro-magnetite (n-Fe3O4 and μ-Fe3O4) are used as a catalyst. Monitoring of TBBPA decay in the photocatalysis and ozonolysis showed photocatalysis to be more effective. Significant removal of TBBPA was achieved within 10 min in photocatalysis (ca. 90%), while for ozonation, a comparable effect was observed within 70 min. To determine the best method of TBBPA degradation concentration on COD and TOC, the removals were examined. The highest oxidation state was obtained for photocatalysis on μ-Fe3O4, whereas for n-Fe3O4 and ozonolysis, the COD/TOC ratio was lower. Acute toxicity results show noticeable differences in the toxicity of TBBPA and its degradation products to Artemia franciscana and Thamnocephalus platyurus. The EC50 values indicate that TBBPA degradation products were toxic to harmful, whereas the TBPPA and post-reaction mixtures were toxic to the invertebrate species tested. The best efficiency in the removal and degradation of TBBPA was in the photocatalysis process on μ-Fe3O4 (reaction system 1). The examined crustaceans can be used as a sensitive test for acute toxicity evaluation.

Transcriptomic and Proteomic Responses of the Organohalide-Respiring Bacterium Desulfoluna spongiiphila to Growth with 2,6-Dibromophenol as the Electron Acceptor

Appl Environ Microbiol 2020 Feb 18;86(5):e02146-19.PMID:31836581DOI:10.1128/AEM.02146-19.

Organohalide respiration is an important process in the global halogen cycle and for bioremediation. In this study, we compared the global transcriptomic and proteomic analyses of Desulfoluna spongiiphila strain AA1, an organohalide-respiring member of the Desulfobacterota isolated from a marine sponge, with 2,6-Dibromophenol or with sulfate as an electron acceptor. The most significant difference of the transcriptomic analysis was the expression of one reductive dehalogenase gene cluster (rdh16), which was significantly upregulated with the addition of 2,6-Dibromophenol. The corresponding protein, reductive dehalogenase RdhA16032, was detected in the proteome under treatment with 2,6-Dibromophenol but not with sulfate only. There was no significant difference in corrinoid biosynthesis gene expression levels between the two treatments, indicating that the production of corrinoid in D. spongiiphila is constitutive or not specific for organohalide versus sulfate respiration. Electron-transporting proteins or mediators unique for reductive dehalogenation were not revealed in our analysis, and we hypothesize that reductive dehalogenation may share an electron-transporting system with sulfate reduction. The metabolism of D. spongiiphila, predicted from transcriptomic and proteomic results, demonstrates high metabolic versatility and provides insights into the survival strategies of a marine sponge symbiont in an environment rich in organohalide compounds and other secondary metabolites.IMPORTANCE Respiratory reductive dehalogenation is an important process in the overall cycling of both anthropogenic and natural organohalide compounds. Marine sponges produce a vast array of bioactive compounds as secondary metabolites, including diverse halogenated compounds that may enrich for dehalogenating bacteria. Desulfoluna spongiiphila strain AA1 was originally enriched and isolated from the marine sponge Aplysina aerophoba and can grow with both brominated compounds and sulfate as electron acceptors for respiration. An understanding of the overall gene expression and the protein production profile in response to organohalides is needed to identify the full complement of genes or enzymes involved in organohalide respiration. Elucidating the metabolic capacity of this sponge-associated bacterium lays the foundation for understanding how dehalogenating bacteria may control the fate of organohalide compounds in sponges and their role in a symbiotic organobromine cycle.

Monohydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Dihydroxylated Polybrominated Biphenyls (Di-OH-PBBs): Novel Photoproducts of 2,6-Dibromophenol

Environ Sci Technol 2015 Dec 15;49(24):14120-8.PMID:26545041DOI:10.1021/acs.est.5b03637.

Hydroxylated polybromodiphenyl ethers (OH-PBDEs) are emerging aquatic pollutants, but their origins in the environment are not fully understood. There is evidence that OH-PBDEs are formed from bromophenols, but the underlying transformation processes remain unknown. Here, we investigate if the photoformation of OH-PBDEs from 2,6-Dibromophenol in aqueous solution involves 2,6-bromophenoxyl radicals. After the UV irradiation of an aqueous 2,6-Dibromophenol solution, HPLC-LTQ-Orbitrap MS and GC-MS analysis revealed the formation of a OH-PBDE and a dihydroxylated polybrominated biphenyl (di-OH-PBB). Both dimeric photoproducts were tentatively identified as 4'-OH-BDE73 and 4,4'-di-OH-PBB80. In addition, three debromination products (4-OH-BDE34, 4'-OH-BDE27, and 4,4'-di-OH-PBBs) were observed. Electron paramagnetic resonance spectroscopy revealed the presence of a 2,6-dibromophenoxyl radical with a six-line spectrum (a(H) (2 meta) = 3.45 G, a(H) (1 para) = 1.04 G, g = 2.0046) during irradiation of a 2,6-Dibromophenol solution in water. The 2,6-dibromophenoxyl radical had a relatively long half-life (122 ± 5 μs) according to laser flash photolysis experiments. The para-para C-C and O-para-C couplings of these 2,6-dibromophenoxyl radicals are consistent with the observed formation of both dimeric OH-PBDE and di-OH-PBB photoproducts. These findings show that bromophenoxyl radical-mediated phototransformation of bromophenols is a source of OH-PBDEs and di-OH-PBBs in aqueous environments that requires further attention.