2-amino Benzamidoxime
(Synonyms: 2-氨基苄氨肟) 目录号 : GC42114A synthetic intermediate useful for pharmaceutical synthesis
Cas No.:16348-49-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >97.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
2-amino Benzamidoxime is a synthetic intermediate useful for pharmaceutical synthesis.
Cas No. | 16348-49-5 | SDF | |
别名 | 2-氨基苄氨肟 | ||
Canonical SMILES | N/C(C1=CC=CC=C1N)=N\O | ||
分子式 | C7H9N3O | 分子量 | 151.2 |
溶解度 | DMF: 5 mg/ml,DMSO: 5 mg/ml,Ethanol: 5 mg/ml,PBS (pH 7.2): 2 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 6.6138 mL | 33.0688 mL | 66.1376 mL |
5 mM | 1.3228 mL | 6.6138 mL | 13.2275 mL |
10 mM | 0.6614 mL | 3.3069 mL | 6.6138 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
High-Throughput Fluorescence Assay for Ketone Detection and Its Applications in Enzyme Mining and Protein Engineering
ACS Omega 2020 Jun 4;5(23):13588-13594.PMID:32566823DOI:10.1021/acsomega.0c00245.
Ketones are of great importance as building blocks in synthetic organic chemistry and biocatalysis. Most ketones cannot easily be quantitatively assayed due to the lack of visible photometric properties. Effective high-throughput assay (HTA) development is therefore necessary for ketone determination. Inspired by previous works of an aldehyde assay based on 2-amino Benzamidoxime derivatives, we developed a colorimetric method for rapid a HTA of structurally diverse ketones by using para-methoxy-2-amino benzamidoxime (PMA). This PMA-based method is characterized by high sensitivity manner (μM) with low background, as checked by gas chromatography (GC). It can be used for quantitatively monitoring ketones by fluorescence screening in microtiter plates. Furthermore, this HTA method was employed in mining alcohol dehydrogenases (ADHs), and in directed evolution aimed at enhancing ADH activity in the catalytic transformation of alcohols to ketones. This work provides a general tool for ketone detection in biocatalyst development.
Rapid, hydrolytically stable modification of aldehyde-terminated proteins and phage libraries
J Am Chem Soc 2014 Jun 11;136(23):8149-52.PMID:24848432DOI:10.1021/ja5023909.
We describe the rapid reaction of 2-amino Benzamidoxime (ABAO) derivatives with aldehydes in water. The ABAO combines an aniline moiety for iminium-based activation of the aldehyde and a nucleophilic group (Nu:) ortho to the amine for intramolecular ring closure. The reaction between ABAO and aldehydes is kinetically similar to oxime formations performed under stoichiometric aniline catalysis. We characterized the reaction by both NMR and UV spectroscopy and determined that the rate-determining step of the process is formation of a Schiff base, which is followed by rapid intramolecular ring closure. The relationship between apparent rate constant and pH suggests that a protonated benzamidoxime acts as an internal general acid in Schiff-base formation. The reaction is accelerated by substituents in the aromatic ring that increase the basicity of the aromatic amine. The rate of up to 40 M(-1) s(-1) between an electron-rich aldehyde and 5-methoxy-ABAO (PMA), which was observed at pH 4.5, places this reaction among the fastest known bio-orthogonal reactions. Reaction between M13 phage-displayed library of peptides terminated with an aldehyde moiety and 1 mM biotin-ABAO derivative reaches completion in 1 h at pH 4.5. Finally, the product of reaction, dihydroquinazoline derivative, shows fluorescence at 490 nm suggesting a possibility of developing fluorogenic aldehyde-reactive probes based on ABAO framework.