2-Bromoacetamide
(Synonyms: 2-溴乙酰胺) 目录号 : GC397752-Bromoacetamide 能使乙醇脱氢酶失活。
Cas No.:683-57-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
2-Bromoacetamide can inactivate alcohol dehydrogenase[1].
[1]. Fries RW, et al. Activation of liver alcohol dehydrogenases by imidoesters generated in solution. Biochemistry. 1975;14(23):5233‐5238.
Cas No. | 683-57-8 | SDF | |
别名 | 2-溴乙酰胺 | ||
Canonical SMILES | O=C(N)CBr | ||
分子式 | C2H4BrNO | 分子量 | 137.96 |
溶解度 | DMSO : 100 mg/mL (724.85 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 7.2485 mL | 36.2424 mL | 72.4848 mL |
5 mM | 1.4497 mL | 7.2485 mL | 14.497 mL |
10 mM | 0.7248 mL | 3.6242 mL | 7.2485 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Developmental toxicity of 2-Bromoacetamide on peri- and early post-implantation mouse embryos in vitro
Ecotoxicol Environ Saf 2023 Mar 1;252:114612.PMID:36774798DOI:10.1016/j.ecoenv.2023.114612.
2-Bromoacetamide (BAcAm), a new class of disinfection by-products (DBPs), is widely detected in drinking water across the world. Reports of the high cytogenetic toxicity of BAcAm have aroused public attention concerning its toxic effects on early embryonic development. In this study, we optimized an in vitro culture (IVC) system for peri- and early post-implantation mouse embryos and used this system to determine the developmental toxicity of BAcAm. We found that exposure to BAcAm caused a reduction in egg cylinder formation rate and abnormal lineage differentiation in a dose-dependent manner. Transcriptomic analysis further revealed that BAcAm exposure at early developmental stages altered the abundance of transcripts related to a variety of biological processes including gene expression, metabolism, cell proliferation, cell death and embryonic development, thus indicating its toxic effects on embryonic development. Thus, we developed a robust tool for studying the toxicology of chemicals at the early stages of embryonic development and demonstrated the developmental toxicity of BAcAm in the early embryonic development of mammals.
Synthesis of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}-N-substituted acetamides as potential antimicrobial and hemolytic agents
Pak J Pharm Sci 2016 May;29(3):801-9.PMID:27166551doi
A new series of N-substituted derivatives of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}acetamides was synthesized. The synthesis was carried out by converting benzoic acid (1) into ethyl benzoate (2), benzohydrazide (3) and then 5-pheny-1,3,4-Oxadiazol-2-thiol (4) step by st0ep. The target compounds 6a-p were synthesized by reaction of compound 4 with equimolar ratios of different N-alkyl/aryl substituted 2-Bromoacetamide (5a-p) in the presence of DMF and sodium hydride (NaH). The spectral (EI-MS, IR, (1)H-NMR) characterization of all the synthesized compounds reveal their successful synthesis. The compounds were also screened for antimicrobial & hemolytic activity and most of them were found to be active against the selected microbial species at variable extent relative to reference standards. But 6h was the most active against the selected panel of microbes. This series showed less toxicity and may be considered for further biological screening and application trial except 6m, possessing higher cytotoxicity.
Aquatic toxicity and aquatic ecological risk assessment of wastewater-derived halogenated phenolic disinfection byproducts
Sci Total Environ 2022 Feb 25;809:151089.PMID:34688747DOI:10.1016/j.scitotenv.2021.151089.
Increasing number of wastewater-derived aliphatic and phenolic disinfection byproducts (DBPs) were discharged into aquatic environment with the discharge of disinfected wastewater. However, the currently available aquatic toxicity data and the aquatic ecological risk information of them are limited, especially for wastewater-derived phenolic DBPs. In this study, we investigated the acute toxicity of 7 phenolic DBPs that selected from the typical five groups of phenolic DBPs (2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, 3,5-dihalo-4-hydroxybenzaldehydes, 3,5-dihalo-4-hydroxybenzoic acids and halo-salicylic acids) and 4 aliphatic DBPs to Gobiocypris rarus and also assessed their potential aquatic ecological risk. Experimental results indicated that the half lethal concentration (LC50) values of 2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols ranged from 1 to 10 mg/L; While that of 3,5-dihalo-4-hydroxybenzaldehydes was between 10 and 100 mg/L, and 3,5-dihalo-4-hydroxybenzoic acids and halo-salicylic acids was >100 mg/L. The toxicity mode of action (MOA) identification results from three methods suggested that no clear and consistent MOA were obtained for those 11 DBPs currently. The species-specific aquatic toxicity analysis results highlighted that no aquatic species would be considered as the most sensitive species for all 11 DBPs. However, crustacean and fish were more sensitive than that of algae for most of tested compounds. Lastly, the aquatic ecological risk assessment results of those 11 DBPs revealed that all 7 phenolic and 2 aliphatic DBPs (2-Bromoacetamide and bromodichloromethane) had low aquatic ecological risk, while dichloroacetic acid and dibromoacetonitrile had high aquatic ecological risk. The low environmental concentration was the main reason why high toxic phenolic DBPs (2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols) exhibited low ecological risk. Their ecological risk may increase with the increases of corresponding environmental concentration. Thus, more efforts should be made to determine other potential harmful effects of those high toxic phenolic DBPs and to minimize their potential ecological risk by taking appropriate measures.
Design and synthesis of a new [18F]fluoropyridine-based haloacetamide reagent for the labeling of oligonucleotides: 2-bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide
Bioconjug Chem 2004 May-Jun;15(3):617-27.PMID:15149190DOI:10.1021/bc049979u.
Based on the recently highlighted potential of nucleophilic heteroaromatic ortho-radiofluorinations in the preparation of fluorine-18-labeled radiotracers and radiopharmaceuticals for PET, a [(18)F]fluoropyridine-based bromoacetamide reagent has been prepared and used in prosthetic group introduction for the labeling of oligonucleotides. [(18)F]FPyBrA (2-bromo-N-[3-(2-[(18)F]fluoropyridin-3-yloxy)propyl]acetamide) was designed as a radiochemically feasible reagent, its pyridinyl moiety both carrying the radioactive halogen (fluorine-18) and allowing its efficient incorporation via a nucleophilic heteroaromatic substitution, and its 2-Bromoacetamide function, ensuring the efficient alkylation of a phosphorothioate monoester group born at the 3'- or 5'-end of single-stranded oligonucleotides. [(18)F]FPyBrA (HPLC-purified) was efficiently prepared in 18-20% non-decay-corrected yield (based on starting [(18)F]fluoride) using a three-step radiochemical pathway in 80-85 min. The developed procedure involves (1) a high-yield nucleophilic heteroaromatic ortho-radiofluorination as the fluorine-18 incorporation-step (70-85% radiochemical yield) and uses [3-(3-tert-butoxycarbonylaminopropoxy)pyridin-2-yl]trimethylammonium trifluoromethanesulfonate as precursor for labeling, followed by (2) rapid and quantitative TFA-removal of the N-Boc-protective group and (3) condensation with 2-bromoacetyl bromide (45-65% radiochemical yield). Typically, 3.3-3.7 GBq (90-100 mCi) of HPLC-purified [(18)F]FPyBrA could be obtained in 80-85 min, starting from 18.5 GBq (500 mCi) of a cyclotron production batch of [(18)F]fluoride. [(18)F]FPyBrA was regioselectively conjugated with 9-mer and 18-mer single-stranded oligonucleotides, provided with a phosphorothioate monoester group at their 3'-end. Both natural phosphodiester DNAs and in vivo-stable 2'-methoxy and -fluoro-modified RNAs were used. Conjugation uses optimized, short-time reaction conditions (MeOH/0.1 M PBS pH 7.4, 15 min, 120 degrees C), both compatible with the chemical stability of the oligonucleotides (ONs) and the half-life of fluorine-18. Conjugated [(18)F]ONs were finally purified by RP-HPLC and desalted using a Sephadex NAP-10 column. The whole radiosynthetic procedure, including the preparation of the fluorine-18-labeled reagent, the conjugation with the oligonucleotide, and the HPLC purification and formulation lasted 140-160 min. [(18)F]FPyBrA represents a valuable alternative to the already reported N-(4-[(18)F]fluorobenzyl)-2-bromoacetamide for the design and development of oligonucleotide-based radiopharmaceuticals for PET.
Simultaneous Optimization of Charge Transport Properties in a Triple-Cation Perovskite Layer and Triple-Cation Perovskite/Spiro-OMeTAD Interface by Dual Passivation
ACS Omega 2022 May 17;7(21):17907-17920.PMID:35664622DOI:10.1021/acsomega.2c01195.
Molecular engineering of additives is a highly effective method to increase the efficiency of perovskite solar cells by reducing trap states and charge carrier barriers in bulk and on the thin film surface. In particular, the elimination of undercoordinated lead species that act as the nonradiative charge recombination center or contain defects that may limit interfacial charge transfer is critical for producing a highly efficient triple-cation perovskite solar cell. Here, 2-iodoacetamide (2I-Ac), 2-Bromoacetamide (2Br-Ac), and 2-chloroacetamide (2Cl-Ac) molecules, which can be coordinated with lead, have been used by adding them into a chlorobenzene antisolvent to eliminate the defects encountered in the triple-cation perovskite thin film. The passivation process has been carried out with the coordination between the oxygen anion (-) and the lead (+2) cation on the enolate molecule, which is in the resonance structure of the molecules. The Spiro-OMeTAD/triple-cation perovskite interface has been improved by surface passivation by releasing HX (X = I, Br) as a byproduct because of the separation of alpha hydrogen on the molecule. As a result, a solar cell with a negligible hysteresis operating at 19.5% efficiency has been produced by using the 2Br-Ac molecule, compared to the 17.6% efficiency of the reference cell.