Home>>Signaling Pathways>> Cardiovascular>> Vasodilation>>2-HOBA

2-HOBA Sale

(Synonyms: 2-羟基苄胺,2-HOBA) 目录号 : GC40503

An isoketal scavenger

2-HOBA Chemical Structure

Cas No.:932-30-9

规格 价格 库存 购买数量
250mg
¥253.00
现货
500mg
¥485.00
现货
1g
¥762.00
现货
5g
¥4,055.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2-HOBA is an isoketal scavenger. In vivo, 2-HOBA reduces angiotensin II-induced increases in blood pressure and decreases isoketal accumulation in mouse heart and vasculature. It also prevents angiotensin II-induced collagen IV accumulation and renal damage in mouse kidney. 2-HOBA has also been used as a building block in the synthesis of saluretic agents and task-specific ionic liquids.

Chemical Properties

Cas No. 932-30-9 SDF
别名 2-羟基苄胺,2-HOBA
Canonical SMILES OC1=C(CN)C=CC=C1
分子式 C7H9NO 分子量 123.2
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,DMSO:PBS(pH 7.2) (1:3): 0.25 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 8.1169 mL 40.5844 mL 81.1688 mL
5 mM 1.6234 mL 8.1169 mL 16.2338 mL
10 mM 0.8117 mL 4.0584 mL 8.1169 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

2-Hydroxybenzylamine (2-HOBA) to prevent early recurrence of atrial fibrillation after catheter ablation: protocol for a randomized controlled trial including detection of AF using a wearable device

Trials 2021 Aug 28;22(1):576.PMID:34454591DOI:10.1186/s13063-021-05553-6.

Background: Although catheter ablation is an effective therapy for atrial fibrillation (AF), the most common cardiac arrhythmia encountered in clinical practice, AF ablation generates inflammation and oxidative stress in the early postoperative period predisposing to recurrence of AF. Isolevuglandins (IsoLGs) are reactive lipid mediators of oxidative stress injury that rapidly react with endogenous biomolecules to compromise their function. 2-Hydroxybenzylamine (2-HOBA), a potent small molecule scavenger of IsoLGs, sequesters the reactive species as inert adducts. This mechanism, coupled with reported safety in humans, supports the investigation of 2-HOBA as a novel therapeutic to reduce AF caused by oxidative stress, such as that which occurs after catheter ablation. Accordingly, we seek to test the hypothesis that treatment with 2-HOBA will decrease early recurrence of AF and other atrial arrhythmias following AF ablation by decreasing IsoLG adducts with native biomolecules. Methods: The proposed trial will randomly assign 162 participants undergoing cryo- or radiofrequency catheter ablation for AF to 2-HOBA (N = 81) or placebo (N = 81). Individuals will begin the study drug 3 days prior to ablation and continue for 28 days. Participants will be given a wearable smartwatch capable of detecting and recording atrial arrhythmias. They will be instructed to record ECGs daily with additional ECGs if they experience symptoms of AF or when alerted by the smartwatch AF detection alarm. The primary clinical endpoint will be an episode of AF, atrial tachycardia, or atrial flutter lasting 30 s or more within 28 days post-AF ablation. Secondary measures will be the change in IsoLG adduct levels from blood samples collected immediately pre-ablation and post-ablation and reduction in AF burden as calculated from the smartwatch. Discussion: The proposed trial will test the hypothesis that 2-HOBA reduces post-ablation atrial arrhythmias through sequestration of reactive IsoLG species. The results of this study may improve the understanding of the role of IsoLGs and oxidative stress in AF pathogenesis and provide evidence to advance 2-HOBA and related compounds as a new therapeutic strategy to treat AF. Trial registration: ClinicalTrials.gov NCT04433091 . Registered on June 3, 2020.

Salts of 2-hydroxybenzylamine with improvements on solubility and stability: Virtual and experimental screening

Eur J Pharm Sci 2022 Feb 1;169:106091.PMID:34875374DOI:10.1016/j.ejps.2021.106091.

2-Hydroxybenzylamine (2-HOBA) is a drug used to effectively treat oxidative stress. To improve its aqueous solubility and thermal stability, salt screening and synthesis was carried out. The conductor-like screening model for the real solvents model (COSMO-RS) was applied to virtual screening of coformers among 200 commonly used candidates for salification of 2-HOBA. As a result, 40 hit compounds were subjected to experimental liquid-assisted grinding (LAG) with 2-HOBA, then 21 systems were characterized as new solid phases by PXRD. Nine multicomponent single crystals of 2-HOBA with succinic acid, p-aminobenzoic acid, p-nitrobenzoic acid, o-nitrobenzoic acid, p-toluic acid, 2,3-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, p-nitrophenol, and 5-hydroxyisophthalic acid were obtained and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. All of them were salts and exhibited higher decomposition temperatures compared with pure 2-HOBA. The apparent aqueous solubility of three new salts, i.e., those with succinic acid, p-aminobenzoic acid, and p-nitrophenol were higher than the equilibrium solubility of 2-HOBA. The accelerated stability test indicated that all salts show excellent stability under conditions (40 °C and 75% RH) for 4 weeks. Overall, this work introduced a protocol that combined the virtual screening tool based on the COSMO-RS model and the experimental LAG method to screen new salts for a target compound. The feasibility of this protocol was confirmed in the case of 2-HOBA whose new salts were successfully obtained and represented an improvement for aqueous solubility and thermal stability.

Inflammation Biomarker Response to Oral 2-Hydroxybenzylamine (2-HOBA) Acetate in Healthy Humans

Inflammation 2023 Mar 20;1-10.PMID:36935449DOI:10.1007/s10753-023-01801-w.

Inflammation is associated with the formation of reactive oxygen species (ROS) and the formation of lipid-derived compounds, such as isolevuglandins (IsoLGs), malondialdehyde, 4-hydroxy-nonenal, and 4-oxo-nonenal. The most reactive of these are the IsoLGs, which form covalent adducts with lysine residues and other cellular primary amines leading to changes in protein function, immunogenicity, and epigenetic alterations and have been shown to contribute to a number of inflammatory diseases. 2-Hydroxybenzylamine (2-HOBA) is a natural compound found in buckwheat seeds and reacts with all IsoLG adducts preventing adduct formation with proteins and DNA. Therefore, 2-HOBA is well positioned as an agent for the prevention of inflammatory-prone diseases. In this study, we examined the potential beneficial effects of 2-HOBA on oxidative stress and inflammatory biomarkers in two cohorts of healthy younger and older adults. We utilized the Olink® targeted inflammation panel before and after an oral 15-day treatment regimen with 2-HOBA. We found significant relative changes in the plasma concentration of 15 immune proteins that may reflect the in vivo immune targets of 2-HOBA. Treatment of 2-HOBA resulted in significant increased levels of CCL19, IL-12β, IL-20Rα, and TNFβ, whereas levels of TWEAK significantly decreased. Ingenuity Pathway Analysis identified canonical pathways regulated by the differentially secreted cytokines, chemokines, and growth factors upon 2-HOBA treatment and further points to biofunctions related to the recruitment, attraction, and movement of different immune cell types. In conclusion, 2-HOBA significantly altered the protein biomarkers CCL19, IL-12β, IL-20Rα, TNFβ, and TWEAK, and these may be responsible for the protective effects of 2-HOBA against reactive electrophiles, such as IsoLGs, commonly expressed in conditions of excessive oxidative stress. 2-HOBA has a role as a IsoLG scavenger to proactively improve immune health in a variety of conditions.

The nutraceutical electrophile scavenger 2-hydroxybenzylamine (2-HOBA) attenuates gastric cancer development caused by Helicobacter pylori

Biomed Pharmacother 2023 Feb;158:114092.PMID:36493697DOI:10.1016/j.biopha.2022.114092.

Stomach cancer is a leading cause of cancer death. Helicobacter pylori is a bacterial gastric pathogen that is the primary risk factor for carcinogenesis, associated with its induction of inflammation and DNA damage. Dicarbonyl electrophiles are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. 2-hydroxybenzylamine (2-HOBA) is a natural compound derived from buckwheat seeds and acts as a potent scavenger of reactive aldehydes. Our goal was to investigate the effect of 2-HOBA on the pathogenesis of H. pylori infection. We used transgenic FVB/N insulin-gastrin (INS-GAS) mice as a model of gastric cancer. First, we found that 2-HOBA is bioavailable in the gastric tissues of these mice after supplementation in the drinking water. Moreover, 2-HOBA reduced the development of gastritis in H. pylori-infected INS-GAS mice without affecting the bacterial colonization level in the stomach. Further, we show that the development of gastric dysplasia and carcinoma was significantly reduced by 2-HOBA. Concomitantly, DNA damage were also inhibited by 2-HOBA treatment in H. pylori-infected mice. In parallel, DNA damage was inhibited by 2-HOBA in H. pylori-infected gastric epithelial cells in vitro. In conclusion, 2-HOBA, which has been shown to be safe in human clinical trials, represents a promising nutritional compound for the chemoprevention of the more severe effects of H. pylori infection.

Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr-/- mice

Nat Commun 2020 Aug 14;11(1):4084.PMID:32796843DOI:10.1038/s41467-020-17915-w.

Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr-/- mice, a model of FH. Compared to hypercholesterolemic Ldlr-/- mice treated with vehicle or 4-HOBA, a nonreactive analogue, 2-HOBA decreases atherosclerosis by 60% in en face aortas, without changing plasma cholesterol. Ldlr-/- mice treated with 2-HOBA have reduced MDA-LDL and MDA-HDL levels, and their HDL display increased capacity to reduce macrophage cholesterol. Importantly, 2-HOBA reduces the MDA- and IsoLG-lysyl content in atherosclerotic aortas versus 4-HOBA. Furthermore, 2-HOBA reduces inflammation and plaque apoptotic cells and promotes efferocytosis and features of stable plaques. Dicarbonyl scavenging with 2-HOBA has multiple atheroprotective effects in a murine FH model, supporting its potential as a therapeutic approach for atherosclerotic cardiovascular disease.