2-Propylheptanol
(Synonyms: 2-丙基-1-庚醇) 目录号 : GC616502-Propylheptanol是中间体(intermediate),可与邻苯二甲酸酐、偏苯三酸酐、己二酸等酯化合成一系列增塑剂。
Cas No.:10042-59-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
2-Propylheptanol is an intermediate and can be used for synthesizing a series of plasticizers by esterification with phthalic anhydride, trimellitic anhydride and adipic acid, etc[1].
[1]. Hualiang An, et al. Preparation of Ni-IL/SiO2 and its catalytic performance for one-pot sequential synthesis of 2-propylheptanol from n-valeraldehyde. Issue 47, 2020, Issue in Progress
Cas No. | 10042-59-8 | SDF | |
别名 | 2-丙基-1-庚醇 | ||
Canonical SMILES | CCCCCC(CCC)CO | ||
分子式 | C10H22O | 分子量 | 158.28 |
溶解度 | 储存条件 | Store at -20°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 6.3179 mL | 31.5896 mL | 63.1792 mL |
5 mM | 1.2636 mL | 6.3179 mL | 12.6358 mL |
10 mM | 0.6318 mL | 3.159 mL | 6.3179 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Effect of Ni/Co mass ratio and NiO-Co3O4 loading on catalytic performance of NiO-Co3O4/Nb2O5-TiO2 for direct synthesis of 2-Propylheptanol from n-valeraldehyde
RSC Adv 2021 Jan 5;11(3):1736-1742.PMID:35424133DOI:10.1039/d0ra08903f.
In the direct synthesis of 2-Propylheptanol (2-PH) from n-valeraldehyde, a second-metal oxide component Co3O4 was introduced into NiO/Nb2O5-TiO2 catalyst to assist in the reduction of NiO. In order to optimize the catalytic performance of NiO-Co3O4/Nb2O5-TiO2 catalyst, the effects of the Ni/Co mass ratio and NiO-Co3O4 loading were investigated. A series of NiO-Co3O4/Nb2O5-TiO2 catalysts with different Ni/Co mass ratios were prepared by the co-precipitation method and their catalytic performances were evaluated. The result showed that NiO-Co3O4/Nb2O5-TiO2 with a Ni/Co mass ratio of 8/3 demonstrated the best catalytic performance because the number of d-band holes in this catalyst was nearly equal to the number of electrons transferred in hydrogenation reaction. Subsequently, the NiO-Co3O4/Nb2O5-TiO2 catalysts with different Ni/Co mass ratios were characterized by XRD and XPS and the results indicated that both an interaction of Ni with Co and formation of a Ni-Co alloy were the main reasons for the reduction of NiO-Co3O4/Nb2O5-TiO2 catalyst in the reaction process. A higher NiO-Co3O4 loading could increase the catalytic activity but too high a loading resulted in incomplete reduction of NiO-Co3O4 in the reaction process. Thus the NiO-Co3O4/Nb2O5-TiO2 catalyst with a Ni/Co mass ratio of 8/3 and a NiO-Co3O4 loading of 14 wt% showed the best catalytic performance; a 2-PH selectivity of 80.4% was achieved with complete conversion of n-valeraldehyde. Furthermore, the NiO-Co3O4/Nb2O5-TiO2 catalyst showed good stability. This was ascribed to the interaction of Ni with Co, the formation of the Ni-Co alloy and further reservation of both in the process of reuse.
Preparation of Ni-IL/SiO2 and its catalytic performance for one-pot sequential synthesis of 2-Propylheptanol from n-valeraldehyde
RSC Adv 2020 Jul 28;10(47):28100-28105.PMID:35519136DOI:10.1039/d0ra03800h.
A novel silica-immobilized nickel and acid ionic liquid (Ni-IL/SiO2) catalyst was prepared by combining a bonding procedure with an impregnation operation and was characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) techniques. Its catalytic performance was evaluated for the one-pot synthesis of 2-Propylheptanol (2-PH) via a sequential n-valeraldehyde self-condensation and hydrogenation reaction. As a result, Ni-IL/SiO2 showed an excellent catalytic activity for the one-pot synthesis of 2-PH, affording a 2-PH selectivity of 75.4% at a n-valeraldehyde conversion of 100% and the sum of 2-PH and pentanol selectivity reached 98.6% under the suitable reaction conditions.