3-Hydroxypropionic Acid (sodium salt)
(Synonyms: Sodium β-hydroxypropionate) 目录号 : GC42292A building block in the synthesis of a variety of compounds
Cas No.:6487-38-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
3-Hydroxypropionic acid is a building block in the synthesis of a variety of compounds with industrial applications, including acrylic acid, acrylamide, and 1,3-propanediol. Accumulation of 3-hydroxypropionic acid is also used as a biomarker of defects in propionic acid and branched-chain amino acid catabolism in patients with methylmalonic acidemia or propionic acidemia.
Cas No. | 6487-38-3 | SDF | |
别名 | Sodium β-hydroxypropionate | ||
Canonical SMILES | [O-]C(CCO)=O.[Na+] | ||
分子式 | C3H5O3•Na | 分子量 | 112.1 |
溶解度 | PBS (pH 7.2): 10 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 8.9206 mL | 44.603 mL | 89.2061 mL |
5 mM | 1.7841 mL | 8.9206 mL | 17.8412 mL |
10 mM | 0.8921 mL | 4.4603 mL | 8.9206 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Anaplerotic therapy in propionic acidemia
Mol Genet Metab 2017 Sep;122(1-2):51-59.PMID:28712602DOI:PMC5612888
Background: Propionic acidemia is a rare metabolic disorder caused by a deficiency of propionyl- CoA carboxylase, the enzyme converting propionyl-CoA to methylmalonyl-CoA that subsequently enters the citric acid cycle as succinyl-CoA. Patients with propionic acidemia cannot metabolize propionic acid, which combines with oxaloacetate to form methylcitric acid. This, with the defective supply of succinyl-CoA, may lead to a deficiency in citric acid cycle intermediates. Purpose: The objective of this study was to determine whether supplements with glutamine (400mg/kg per day), citrate (7.5mEq/kg per day), or ornithine α-ketoglutarate (400mg/kg per day) (anaplerotic agents that could fill up the citric acid cycle) would affect plasma levels of glutamine and ammonia, the urinary excretion of Krebs cycle intermediates, and the clinical outcome in 3 patients with propionic acidemia. Methods: Each supplement was administered daily for four weeks with a two week washout period between supplements. The supplement that produced the most favorable changes was supplemented for 30 weeks following the initial study period and then for a 2 year extension. Results: The urinary excretion of the Krebs cycle intermediates, α-ketoglutarate, succinate, and fumarate increased significantly compared to baseline during citrate supplementation, but not with the other two supplements. For this reason, citrate supplements were continued in the second part of the study. The urinary excretion of methylcitric acid and 3-Hydroxypropionic Acid did not change with any intervention. No significant changes in ammonia or glutamine levels were observed with any supplement. However, supplementation with any anaplerotic agents normalized the physiological buffering of ammonia by glutamate, with plasma glutamate and alanine levels significantly increasing, rather than decreasing with increasing ammonia levels. No significant side effects were observed with any therapy and safety labs (blood counts, chemistry and thyroid profile) remained unchanged. Motor and cognitive development was severely delayed before the trial and did not change significantly with therapy. Hospitalizations per year did not change during the trial period, but decreased significantly (p<0.05) in the 2years following the study (when citrate was continued) compared to the 2years before and during the study. Conclusions: These results indicate that citrate entered the Krebs cycle providing successful anaplerotic therapy by increasing levels of the downstream intermediates of the Krebs cycle: α-ketoglutarate, succinate and fumarate. Citrate supplements were safe and might have contributed to reduce hospitalizations in patients with propionic acidemia.