4-Azidobutylamine
目录号 : GC682074-Azidobutylamine 是一种 PROTAC linker,属于 alkyl chain 类。4-Azidobutylamine 可用于合成一系列 PROTAC 分子。PROTAC 分子含有两个通过 linker 连接的不同配体; 一种是 E3 泛素连接酶配体,另一种是靶蛋白配体。PROTAC 利用细胞内泛素-蛋白酶体系统选择性降解靶蛋白。
Cas No.:88192-20-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
4-Azidobutylamine is a PROTAC linker, which refers to the alkyl chain composition. 4-Azidobutylamine can be used in the synthesis of a series of PROTACs. PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins[1].
[1]. Schiedel M, et al. Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals). J Med Chem. 2018 Jan 25;61(2):482-491.
Cas No. | 88192-20-5 | SDF | Download SDF |
分子式 | C4H10N4 | 分子量 | 114.15 |
溶解度 | DMSO : ≥ 250 mg/mL (2190.10 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 8.7604 mL | 43.802 mL | 87.604 mL |
5 mM | 1.7521 mL | 8.7604 mL | 17.5208 mL |
10 mM | 0.876 mL | 4.3802 mL | 8.7604 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Synthesis and Characterization of Multiwalled Carbon Nanotubes/Poly(HEMA-co-MMA) by Utilizing Click Chemistry
J Nanosci Nanotechnol 2016 Mar;16(3):2975-8.PMID:27455744DOI:10.1166/jnn.2016.11049.
The hybrid material consisting of multi walled carbon nanotubes (MWNTs) and poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) [poly(HEMA-co-MMA)] was synthesized by a combination of RAFT and Click chemistry. In the primary stage, the copolymer poly(HEMA-co-MMA) was prepared by applying RAFT technique. Alkynyl side groups were incorporated onto the poly(HEMA-co-MMA) backbone by esterification reaction. Then, MWNTs-N3 was prepared by treating MWNTs with 4-Azidobutylamine. The click coupling reaction between azide-functionalized MWNTs (MWNTs-N3) and the alkyne-functionalized random copolymer ((HEMA-co-MMA)-Alkyne) with the Cu(I)-catalyzed [3+2] Huisgen cycloaddition afforded the hybrid compound. The structure and properties of poly(MMA-co-HEMA)-g-MWNTs were investigated by FT-IR, EDX and TGA measurements. The copolymer brushes were observed to be immobilized onto the functionalized MWNTs by SEM and TEM analysis.
A mutagenic metabolite synthesized by Salmonella typhimurium grown in the presence of azide is azidoalanine
Mutat Res 1983 Sep;118(4):229-39.PMID:6353213DOI:10.1016/0165-1218(83)90207-0.
A mutagenic azide metabolite was purified from the medium in which Salmonella typhimurium cells were grown in the presence of azide. This metabolite was identified to be azidoalanine based on infrared and mass spectroscopy and elemental analysis. This compound appeared to be identical to the mutagenic compound synthesized in vitro from azide and O-acetylserine by partially purified O-acetylserine sulfhydrylase. The metabolite (azidoalanine) mutagenic efficiency and spectrum in S. typhimurium was similar to that of inorganic azide. The compounds 2-azidoethylamine, 2-bromoethylamine, 3-bromopropionic acid and N-(azidomethyl) phthalimide were also mutagenic with a similar spectrum to azide and azidoalanine, but with lower efficiency. The compounds 3-azidopropylamine, 4-Azidobutylamine, 3-chloroalanine and ethylamine were only weakly or nonmutagenic. Numerous other chloro, bromo and azido phthalimide derivatives tested were nonmutagenic. It is suggested that the lack of azide mutagenicity (and perhaps carcinogenicity) in mammalian cells may be due to their inability to convert azide to azidoalanine.