5(6)-Carboxy-2',7'-dichlorofluorescein
目录号 : GC682115(6)-Carboxy-2',7'-dichlorofluorescein 是一种荧光素,是MRP2囊泡转运实验的理想底物,具有良好的检测和转运特性。
Cas No.:111843-78-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
5(6)-Carboxy-2',7'-dichlorofluorescein is an ideal substrate for MRP2 vesicular transport assay, with excellent detection and transport properties[1].
[1]. Heredi-Szabo K, et al. Characterization of 5(6)-carboxy-2,'7'-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. J Biomol Screen. 2008 Apr;13(4):295-301.
Cas No. | 111843-78-8 | SDF | Download SDF |
分子式 | C42H20Cl4O14 | 分子量 | 445.21 |
溶解度 | DMSO : 31.25 mg/mL (70.19 mM; Need ultrasonic) | 储存条件 | 4°C, away from moisture |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.2461 mL | 11.2307 mL | 22.4613 mL |
5 mM | 0.4492 mL | 2.2461 mL | 4.4923 mL |
10 mM | 0.2246 mL | 1.1231 mL | 2.2461 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Characterization of rhodamine-123, calcein and 5(6)-Carboxy-2',7'-dichlorofluorescein (CDCF) export via MRP2 (ABCC2) in MES-SA and A549 cells
Eur J Pharm Sci 2011 Aug 17;43(5):359-69.PMID:21605668DOI:10.1016/j.ejps.2011.05.003.
Based on our initial results on the effects of several ATP-binding cassette (ABC) transporter inhibitors on rhodamine-123 efflux from A549, a human lung carcinoma, and MES-SA, a human uterine sarcoma cell line, the aim of this study was to identify the transporter responsible for this export. Export of two fluorescent dyes, rhodamine-123 and calcein, was investigated in both cell lines by testing five commonly used inhibitors of ABC transporters: verapamil, cyclosporin A, MK571, GF129018 and fumitremorgin C. A very high degree of correlation (R(2)=0.91-0.99) between results obtained in the two cell lines suggested that the same transporter was involved in the export of tested fluorescent substrates in both cell lines. Expression analysis and gene silencing techniques, as well as transport of additional substrate 5(6)-Carboxy-2',7'-dichlorofluorescein (CDCF) on membrane vesicles revealed that the transporter was multidrug resistance related protein 2 (MRP2, ABCC2). Furthermore, it was found that the tested modulators showed very diverse effects on the export of three fluorescent substrates via MRP2, with some modulators being inhibitory in one, while having no effect or even stimulating the transport in the other fluorescent dye assay. Verapamil inhibited rhodamine-123, but stimulated CDCF transport and did not affect calcein export. GF129018 did not affect calcein and CDCF transport, but it inhibited rhodamine-123 transport. These results demonstrate the importance of studying various combinations of potential substrates and modulators of MRP2 in order to estimate possible drug-drug interactions in living organisms. In addition, A549 and MES-SA cells were shown to be good cell models for studying interactions of compounds with human MRP2.
Quantification of biliary excretion and sinusoidal excretion of 5(6)-Carboxy-2',7'-dichlorofluorescein (CDF) in cultured hepatocytes isolated from Sprague Dawley, Wistar and Mrp2-deficient Wistar (TR(-)) rats
Toxicol In Vitro 2014 Sep;28(6):1165-75.PMID:24907646DOI:10.1016/j.tiv.2014.05.010.
Hepatic efflux of drug candidates is an important issue in pre-clinical drug development. Here we utilise a method which quantifies and distinguishes efflux of drugs at the canalicular and sinusoidal membranes in rat hepatocyte cultures. Bi-phasic kinetics of transport of 5(6)-carboxydichlorofluorescein (CDF) at the canalicular membrane was demonstrated in Sprague Dawley (SD) and Wistar (W) rat hepatocytes. The high affinity component (Km=3.2±0.8μM (SD), 9.0±3.1μM (W)) was attributed to Mrp2-mediated transport, the low affinity component (Km=192.1±291.5μM (SD), 69.2±36.2μM (W)) may be attributed to transport involving a separate Mrp2 binding site. Data from membranes (Hill coefficient (h)=2.0±0.5) and vesicles (h=1.6±0.2) expressing Mrp2 and from SD (h=1.6±0.4) and Wistar (h=4.0±0.6) hepatocytes suggests transport involves more than one binding site. In TR(-) hepatocytes, CDF efflux was predominantly over the sinusoidal membrane (Km=100.7±36.0μM), consistent with low abcc2 (Mrp2) expression and compensatory increase in abcc3 (Mrp3) expression. This report shows the potential of using this in vitro method to model changes in biliary excretion due to alterations in transporter expression.
Identification of novel inhibitors of rat Mrp3
Eur J Pharm Sci 2021 Jul 1;162:105813.PMID:33753214DOI:10.1016/j.ejps.2021.105813.
Multidrug resistance-associated protein (MRP; ABCC gene family) mediated efflux transport plays an important role in the systemic and tissue exposure profiles of many drugs and their metabolites, and also of endogenous compounds like bile acids and bilirubin conjugates. However, potent and isoform-selective inhibitors of the MRP subfamily are currently lacking. Therefore, the purpose of the present work was to identify novel rat Mrp3 inhibitors. Using 5(6)-Carboxy-2',7'-dichlorofluorescein diacetate (CDFDA) as a model-(pro)substrate for Mrp3 in an oil-spin assay with primary rat hepatocytes, the extent of inhibition of CDF efflux was determined for 1584 compounds, yielding 59 hits (excluding the reference inhibitor) that were identified as new Mrp3 inhibitors. A naive Bayesian prediction model was constructed in Pipeline Pilot to elucidate physicochemical and structural features of compounds causing Mrp3 inhibition. The final Bayesian model generated common physicochemical properties of Mrp3 inhibitors. For instance, more than half of the hits contain a phenolic structure. The identified compounds have an AlogP between 2 and 4.5, between 5 to 8 hydrogen bond acceptor atoms, a molecular weight between 260 and 400, and 2 or more aromatic rings. Compared to the depleted dataset (i.e. 90% remaining compounds), the Mrp3 hit rate in the enriched set was 7.5-fold higher (i.e. 17.2% versus 2.3%). Several hits from this first screening approach were confirmed in an additional study using Mrp3 transfected inside-out membrane vesicles. In conclusion, several new and potent inhibitors of Mrp3 mediated efflux were identified in an optimized in vitro rat hepatocyte assay and confirmed using Mrp3 transfected inside-out membrane vesicles. A final naive Bayesian model was developed in an iterative way to reveal common physicochemical and structural features for Mrp3 inhibitors. The final Bayesian model will enable in silico screening of larger libraries and in vitro identification of more potent Mrp3 inhibitors.
A structure-activity relationship study of ABCC2 inhibitors
Eur J Pharm Sci 2017 May 30;103:60-69.PMID:28185990DOI:10.1016/j.ejps.2017.02.005.
Multidrug resistance associated protein 2 (MRP2/ABCC2) is a membrane transport protein that can potentially affect the disposition of many substrate drugs and their metabolites. Recently, we studied the interaction of a library of 432 compounds with ABCC2, and the structure-activity relationship (SAR) of a subset of 64 compounds divided into four scaffolds (Wissel, G. et al., 2015. Bioorg Med Chem., 23(13), pp.3513-25). We have now expanded this test set by investigating 114 new compounds, of which 71 are representative of the previous four scaffolds and 43 compounds belong to a new scaffold. Interaction with ABCC2 was assessed by measuring the compounds effect on 5(6)-Carboxy-2',7'-dichlorofluorescein transport in the vesicular transport assay. In line with our previous study, we observed that anionic charge is not essential for inhibition of ABCC2 transport, even though it often increases the inhibitory activity within the analogue series. Additionally, we found that halogen substitutions often increase the inhibitory activity. The results confirm the importance of structural features such as aromaticity and lipophilicity for ABCC2 inhibitory activity.
Drug Distribution to Retinal Pigment Epithelium: Studies on Melanin Binding, Cellular Kinetics, and Single Photon Emission Computed Tomography/Computed Tomography Imaging
Mol Pharm 2016 Sep 6;13(9):2977-86.PMID:26741026DOI:10.1021/acs.molpharmaceut.5b00787.
Melanin binding is known to affect the distribution and elimination of ocular drugs. The purpose of this study was to evaluate if the extent of drug uptake to primary retinal pigment epithelial (RPE) cells could be estimated based on in vitro binding studies with isolated melanin and evaluate the suitability of single photon emission computed tomography/computed tomography (SPECT/CT) in studying pigment binding in vivo with pigmented and albino rats. Binding of five compounds, basic molecules timolol, chloroquine, and nadolol and acidic molecules methotrexate and 5(6)-Carboxy-2',7'-dichlorofluorescein (CDCF), was studied using isolated melanin from porcine choroid-RPE at pH 5.0 and 7.4. The uptake to primary porcine RPE cells was studied with timolol, chloroquine, methotrexate, and CDCF. The cell study setting was modeled using parameters from the in vitro binding study. In vivo kinetics of 3-[I-123]-iodochloroquine was studied by the SPECT/CT method in albino and pigmented rats. All basic compounds bound to melanin at both pH values, whereas the acidic compounds bound more at pH 5.0 than at pH 7.4. The basic compounds (chloroquine, timolol) showed significant cellular uptake, unlike the acidic compounds (methotrexate, CDCF). On the basis of the modeling, melanin binding was a major factor governing the overall drug distribution to the RPE cells. Likewise, melanin binding explained distribution of 3-[I-123]-iodochloroquine in the pigmented RPE, whereas drug accumulation was not seen in the albino rat. This study demonstrates the suitability of noninvasive SPECT/CT imaging in monitoring ocular melanin binding in vivo. These studies are a useful step toward understanding the pharmacokinetic impact of melanin binding.