Home>>Natural Products>>5(6)-ROX (5(6)-Carboxy-X-rhodamine)

5(6)-ROX (5(6)-Carboxy-X-rhodamine) Sale

(Synonyms: 5(6)-羧基-X-罗丹明盐酸盐,5(6)-Carboxy-X-rhodamine) 目录号 : GC30339

5(6)-ROX (5(6)-Carboxy-X-rhodamine) 是一种核酸荧光标记,可用作实时聚合酶链式反应的参考染料。

5(6)-ROX (5(6)-Carboxy-X-rhodamine) Chemical Structure

Cas No.:198978-94-8

规格 价格 库存 购买数量
5mg
¥446.00
现货
10mg
¥714.00
现货
50mg
¥1,964.00
现货
100mg
¥3,035.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5(6)-ROX is a nucleic acid fluorescent label which can be used as a reference dye for real-time polymerase chain reaction.

[1]. Wang G, et al. Optimization of 6-carboxy-X-rhodamine concentration for real-time polymerase chain reaction using molecular beacon chemistry. Can J Microbiol. 2007 Mar;53(3):391-7.

Chemical Properties

Cas No. 198978-94-8 SDF
别名 5(6)-羧基-X-罗丹明盐酸盐,5(6)-Carboxy-X-rhodamine
Canonical SMILES [O-]C(C1=CC(C(O)=O)=CC=C1C(C2=C(O3)C4=C5N(CCC4)CCCC5=C2)=C6C3=C(CCC7)C8=[N+]7CCCC8=C6)=O.[O-]C(C9=CC=C(C(O)=O)C=C9C(C%10=C(O%11)C%12=C%13N(CCC%12)CCCC%13=C%10)=C%14C%11=C(CCC%15)C%16=[N+]%15CCCC%16=C%14)=O
分子式 C33H30N2O5 分子量 534.6
溶解度 DMSO : ≥ 62.5 mg/mL (116.91 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8706 mL 9.3528 mL 18.7056 mL
5 mM 0.3741 mL 1.8706 mL 3.7411 mL
10 mM 0.1871 mL 0.9353 mL 1.8706 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Dual-labeled prostate-specific membrane antigen (PSMA)-targeting agent for preoperative molecular imaging and fluorescence-guided surgery for prostate cancer

The objective of this study was to report the synthesis and characteristics of a dual modality imaging agent, Tc-99m GRFLTGGTGRLLRIS-GHEG-ECG-K(-5-carboxy-X-rhodamine)-NH2 (GRFLT-ECG-ROX), and to verify its feasibility as both molecular imaging and intraoperative guidance agent. GRFLT-ECG-ROX was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of GRFLT-ECG-ROX with Tc-99m was accomplished using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed using LNCaP and PC-3 tumor-bearing murine models. Surgical removal of tumor nodules in murine models with peritoneal carcinomatosis was performed under a fluorescence imaging system. After radiolabeling procedures with Tc-99m, Tc-99m GRFLT-ECG-ROX complexes were prepared in high yield (>96%). The binding affinity value (Kd ) of Tc-99m GRFLT-ECG-ROX for LNCaP cells was estimated to be 9.5 ± 1.3 nM. In gamma camera imaging, the tumor to normal muscle uptake ratios of Tc-99m GRFLT-ECG-ROX increased with time (3.1 ± 0.2, 4.0 ± 0.4, and 6.3 ± 0.9 at 1, 2, and 3 h, respectively). Under real-time optical imaging, the removal of visible nodules was successfully performed. Thus, Tc-99m GRFLT-ECG-ROX could provide both preoperative molecular imaging and fluorescence imaging guidance for tumor removal.

A novel dual-modality imaging agent targeting folate receptor of tumor for molecular imaging and fluorescence-guided surgery

Objective: Folate receptor (FR) is an ideal target for cancer imaging because it is frequently overexpressed in major types of human tumor, whereas its expression in normal organs is highly limited. Combining nuclear and fluorescence-imaging techniques provides a novel approach for cancer imaging and monitoring the surgery. The objective of this study was to report the synthesis and characteristics of a dual-modality imaging agent, Tc-99m Folate-Gly-His-Glu-Gly-Glu-Cys-Gly-Lys(-5-carboxy-X-rhodamine)-NH2 (Folate-ECG-ROX), and verify its feasibility as both molecular imaging agent and intra-operative guidance.
Methods: Folate-ECG-ROX was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of Folate-ECG-ROX with Tc-99m was done using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed using KB and HT-1080 tumor-bearing murine models. Tumor tissue slides were prepared and analyzed with immunohistochemistry staining and confocal microscopy. Surgical removal of tumor nodules in murine models with peritoneal carcinomatosis was performed under the fluorescence-imaging system.
Results: After radiolabeling procedures with Tc-99m, Tc-99m Folate-ECG-ROX complexes were prepared in high yield (> 97%). The binding affinity value (Kd) of Tc-99m Folate-ECG-ROX for KB cells was estimated to be 6.9 ± 0.9 nM. In gamma camera imaging, tumor to normal muscle uptake ratio of Tc-99m Folate-ECG-ROX increased with time (3.4 ± 0.4, 4.4 ± 0.7, and 6.6 ± 0.8 at 1, 2, and 3 h, respectively). In biodistribution study, %IA/g for KB tumor was 2.50 ± 0.80 and 4.08 ± 1.16 at 1 and 3 h, respectively. Confocal microscopy with immunohistochemistry staining detected strong Tc-99m Folate-ECG-ROX fluorescence within KB tumor tissue which is correlating with the fluorescent activity of anti-FR antibody. Under real-time optical imaging, the removal of visible nodules was successfully performed.
Conclusions: In vivo and in vitro studies revealed substantial and specific uptake of Tc-99m Folate-ECG-ROX in FR-positive tumors. Thus, Tc-99m Folate-ECG-ROX could provide both pre-operative molecular imaging and fluorescence image-guidance for tumor.

Comparison of fluorescence energy transfer primers with different donor-acceptor dye combinations

Fluorescence energy transfer (ET) primers are far superior to single dye-labeled primers as labels for DNA sequencing and polymerase chain reaction amplification. We compare here ET primers with different donor and acceptor dye combinations with respect to the relative acceptor fluorescence emission intensity and the amount of residual donor fluorescence emission. Primers with the following donor/acceptor pairs were synthesized: 6-carboxyfluorescein/6-carboxy-X-rhodamine (FAM-ROX), 3-(epsilon-carboxypentyl)-3'-ethyl-5,5'-dimethyloxacarbocyanine/ 6-carboxy-X-rhodamine (CYA-ROX), and the 4,4-difluoro-4-bora-3 alpha,4 alpha-diaza-s-indacene-3-propionic acid (BODIPY) derivatives, 5,7-dimethyl-BODIPY/5-(4-phenyl-1,3-butadienyl) BODIPY (BODIPY503/512-BODIPY581/591). Variables examined included the length of the 5'-amino linker arm, the number of base pairs between the donor and acceptor, and the excitation wavelength (488 or 514 nm). Of the primers examined, CYA-ROX primers offer the best combination of acceptor fluorescence emission intensity and spectral purity.

High-resolution liquid chromatography of fluorescent dye-labeled nucleic acids

Using 100 mM of triethylammonium acetate as ion-pairing reagent, phosphodiester oligonucleotides labeled fluorescently at their 5' terminus could be separated successfully on alkylated nonporous 2.3-microns poly(styrene-divinylbenzene) particles by means of high-resolution liquid chromatography. Applying excitation wavelengths of 490, 520, 550, and 575 nm, respectively, optimum sensitivity was achieved for the fluorophores 5-carboxyfluorescein, 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein, N,N,N',N'-tetramethyl-6-carboxyrhodamine, and 6-carboxy-X-rhodamine (FAM, JOE, TAMRA, and ROX, respectively) at emission wavelengths of 520, 550, 580, and 605 nm, respectively. With calibration curves being linear over at least three orders of magnitude, the lower detection limits were 0.5, 2, 2, and 3 fmol, respectively. Depending on the type of fluorescent dye attached, retention times increased in the order JOE < FAM < TAMRA < ROX. Subsequently, fluorescent oligonucleotides were employed to prime polymerase chain reactions (PCR). Again the fluorophores were found to increase the retention times of double-stranded nucleic acids, but to a lesser degree than those of single-stranded oligonucleotides. Using a single FAM label attached to one of the two PCR primers, the sensitivity of fluorescence detection was found to be approximately 1 fmol or 30-70 times higher than that of uv absorbance detection depending on the length of the PCR product. Since the technique allows the separation of PCR products differing only 4 to 8 base pairs in length within a size range of 50 to 200 base pairs, it may be employed for the quantitative assessment of competitive PCR.

A simple QD-FRET bioprobe for sensitive and specific detection of hepatitis B virus DNA

We report here a simple quantum dot-FRET (QD-FRET) bioprobe based on fluorescence resonance energy transfer (FRET) for the sensitive and specific detection of hepatitis B virus DNA (HBV DNA). The proposed one-pot HBV DNA detection method is very simple, rapid and convenient due to the elimination of the washing and separation steps. In this study, the water-soluble CdSe/ZnS QDs were prepared by replacing the trioctylphosphine oxide on the surface of QDs with mercaptoacetic acid (MAA). Subsequently, DNA was attached to QDs surface to form the functional QD-DNA bioconjugates by simple surface ligand exchange. After adding 6-carboxy-X-rhodamine (ROX)-modified HBV DNA (ROX-DNA) into the QD-DNA bioconjugates solution, DNA hybridization between QD-DNA bioconjugates and ROX-DNA was formed. The resulting hybridization brought the ROX fluorophore, the acceptor, and the QDs, the donor, into proximity, leading to energy transfer from QDs to ROX. When ROX-DNA was displaced by the unlabeled HBV DNA, the efficiency of FRET was dramatically decreased. Based on the changes of both fluorescence intensities of QDs and ROX, HBV DNA could be detected with high sensitivity and specificity. Under the optimized conditions, the linear range of HBV DNA determination was 2.5 - 30 nmol L(-1), with a correlation coefficient (R) of 0.9929 and a limit of detection (3σ black) of 1.5 nmol L(-1). The relative standard deviation (R.S.D.) for 12 nmol L(-1) HBV DNA was 0.9% (n = 5). There was no interference to non-complementary DNA. Time-resolved fluorescence spectra and fluorescence images were performed to verify the validity of this method and the results were satisfying.