Home>>Analytical Standards>>5-APDI (hydrochloride)

5-APDI (hydrochloride) Sale

(Synonyms: 5(2Aminopropyl)2,3dihydro1Hindene, IAP, Indanylaminopropane) 目录号 : GC42487

An Analytical Reference Standard

5-APDI (hydrochloride) Chemical Structure

Cas No.:152623-95-5

规格 价格 库存 购买数量
1mg
¥839.00
现货
5mg
¥3,786.00
现货
10mg
¥6,716.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5-APDI is an indane with an amphetamine-like aminopropane group. It inhibits the uptake of serotonin, dopamine, and norepinephrine by crude synaptosomes (IC50 = 82, 1,847, and 849 nM, respectively). In discrimination studies using rats, 5-APDI fully substitutes for the entactogen N-methyl-1,3-dioxolyl-N-methylbutanamine but does not substitute for amphetamine. This product is intended for forensic and research applications.

Chemical Properties

Cas No. 152623-95-5 SDF
别名 5(2Aminopropyl)2,3dihydro1Hindene, IAP, Indanylaminopropane
Canonical SMILES NC(C)CC1=CC(CCC2)=C2C=C1.Cl
分子式 C12H17N•HCl 分子量 211.7
溶解度 DMF: 30 mg/ml,DMF:PBS(pH 7.2)(1:1): 0.5 mg/ml,DMSO: 20 mg/ml,Ethanol: 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.7237 mL 23.6183 mL 47.2367 mL
5 mM 0.9447 mL 4.7237 mL 9.4473 mL
10 mM 0.4724 mL 2.3618 mL 4.7237 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

1-[4-(2-Dimethylaminoethoxy)phenylcarbonyl]-3,5-Bis(3,4,5-Trimethoxybenzylidene)- 4-Piperidone hydrochloride and Related Compounds: Potent Cytotoxins Demonstrate Greater Toxicity to Neoplasms than Non- Malignant Cells

Med Chem 2022;18(9):1001-1012.PMID:35319387DOI:10.2174/1573406418666220322154110.

Background: The incidence of cancer has been increasing worldwide. Unfortunately, the drugs used in cancer chemotherapy are toxic to both neoplasms and normal tissues, while many available medications have low potencies. Conjugated α,β-unsaturated ketones differ structurally from contemporary anticancer medications , some of which have noteworthy antineoplastic properties. Objectives: This study aimed to design and synthesize highly potent cytotoxins with far greater toxicity to neoplasms than to non-malignant cells. Methods: A series of N-acyl-3,5-bis(benzylidene)-4-piperidone hydrochlorides 4a-n were prepared and evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas as well as against HGF, HPLF, and HPC non-malignant cells. QSAR and western blot analyses were performed. Results: The majority of compounds display submicromolar CC50 values towards the neoplasms; the figures for some of the compounds are below 10-7 M. In general, 4a-n have much lower CC50 values than those of melphalan, 5-fluorouracil, and methotrexate, while some compounds are equitoxic with doxorubicin. The compounds are far less toxic to the non-malignant cells, giving rise to substantial selectivity index (SI) figures. A QSAR study revealed that both potency and the SI data were controlled to a large extent by the electronic properties of the substituents in the arylidene aryl rings. Two representative compounds, 4f and 4g, caused apoptosis in HSC-2 cells. Conclusion: The compounds in series 4 are potent cytotoxins displaying tumor-selective toxicity. In particular, 4g with an average CC50 value of 0.04 μM towards four malignant cell lines and a selectivity index of 46.3 is clearly a lead molecule that should be further evaluated.

Synthesis of 2-(1,5-diaryl-1,4-pentadien-3-ylidene)-hydrazinecarboximidamide hydrochloride catalyzed by p-dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation

Ultrason Sonochem 2012 Sep;19(5):1033-8.PMID:22440718DOI:10.1016/j.ultsonch.2012.02.009.

Amidinohydrazone compounds are very important synthetic intermediates and can serve as versatile precursors in synthesis of many natural products and drug molecules. The use of ultrasound, p-dodecylbenzenesulfonic acid (DBSA) and water as solvent improved the synthesis of different 2-(1,5-diaryl-1,4-pentadien-3-ylidene)-hydrazinecarboximidamide hydrochlorides. The best reaction conditions for the condensation of 1,5-diphenyl-1,4-pentadien-3-one with aminoguanidine hydrochloride were as follows: 1,5-diphenyl-1,4-pentadiene-3-one (1, 1 mmol), aminoguanidine hydrochloride (1.1 mmol), DBSA (0.5 mmol), water 10 mL, reaction temperature 25-27°C, irradiation frequency 25 kHz. 2a was achieved in 94% yield within 2h. The other seven amidinohydrazones were obtained in 84-94% yield within 2-3h under the same conditions. Compared to the method involving catalysis by hydrochloric acid in refluxing EtOH, the advantages of present procedure are milder conditions, shorter reaction times, higher yields, and environmental friendly conditions, which make it a useful strategy for the synthesis of analogues.

Reaction of 3-acetonyl-5-cyano-1,2,4-thiadiazole with phenylhydrazine hydrochlorides: indolization and phenylpyrazolation

Chem Pharm Bull (Tokyo) 2000 Jan;48(1):160-2.PMID:10705497DOI:10.1248/cpb.48.160.

Treatment of 3-acetonyl-5-cyano-1,2,4-thiadiazole (1) with 4-methyl or 4-methoxyphenylhydrazine hydrochloride provided 5-cyano-3-(2,5-dimethylindol-3-yl)-1,2,4-thiadiazole (2) or 5-cyano-3-(5-methoxy-2-methylindol-3-yl)-1,2,4-thiadiazole (3) as the sole product, respectively. In contrast, treatment of 1 with phenylhydrazine hydrochloride resulted in the formation of 5-cyano-3-(2-methylindol-3-yl)-1,2,4-thiadiazole (4) and the unexpected 5-cyano-3-(3,5-dimethyl-1-phenylpyrazol-4-yl)-1,2,4-thiadiazole (5). In a similar manner, when 1 was treated with 4-chlorophenylhydrazine hydrochloride, indolization was suppressed by phenylpyrazolation giving rise to 5-cyano-3-(5-chloro-2-methylindol-3-yl)-1,2,4-thiadiazole (6) and 5-cyano-3-[1-(4-chlorophenyl)-3,5-dimethylpyrazol-4-yl]-1,2,4-thia diazole (7). The reaction mechanism is discussed. Compounds 4, 5 and 6 exhibited weak antimicrobial activity against Helicobacter pylori.

Green Formation of Novel Pyridinyltriazole-Salicylidene Schiff Bases

Curr Org Synth 2019;16(2):309-313.PMID:31975681DOI:10.2174/1570179416666181207145951.

Aim and objective: In this work, water was used as solvent for the eco-friendly synthesis of imines under microwave irradiation. In the first step of the study, 5-pyridinyl-3-amino-1,2,4-triazole hydrochlorides were synthesized in the reaction of amino guanidine hydrochloride with different pyridine carboxylic acids under acid catalysis. A green method for 5-pyridinyl-3-amino-1,2,4-triazoles was developed with the assistance of microwave synthesis. In the second step, the eco-friendly synthesis of imines was achieved by reacting 5- pyridinyl-2H-1,2,4-triazol-3-amine hydrochlorides with salicylic aldehyde derivatives to produce 2-(5- pyridinyl-2H-1,2,4-triazol-3-ylimino)methyl)phenol imines. Materials and methods: Microwave experiments were done using a monomode Anton Paar Monowave 300 microwave reactor (2.45 GHz). Reaction temperatures were monitored by an IR sensor. Microwave experiments were carried out in sealed microwave process vials G10 with maximum reaction volume of 10 mL. Results: When alternative methods were used, it was impossible to obtain good yields from ethanol. Nevertheless, the use of water was successful for this reaction. After 1-h microwave irritation, a yellow solid was obtained in 82% yield. Conclusion: In this work an eco-friendly protocol for the synthesis of Schiff bases from 5-(pyridin-2-, 3- or 4- yl)-3-amino-1,2,4-triazoles and substituted salicylic aldehydes in water under microwave irradiation was developed. Under the found conditions the high yields for the products were achieved at short reaction time and with an easy isolation procedure.

[The bioavailability of midodrin and alpha-2,5-dimethoxyphenyl-beta-aminoethanol hydrochloride]

Arzneimittelforschung 1987 Apr;37(4):447-50.PMID:2440455doi

The pharmacokinetics of midodrin (alpha-2,5-dimethoxyphenyl-beta-glycinamidoethanol hydrochloride, ST 1085) and its main metabolite ST 1059 (alpha-2,5-dimethoxyphenyl-beta-aminoethanol hydrochloride) have been investigated in 12 male healthy volunteers. 2.5 mg midodrin hydrochloride were applied intravenously, as drinking solution or as tablet (Gutron) according to a randomized cross-over design. Plasma and urine samples collected up to 24 h after application were analyzed by high-performance liquid chromatography with fluorescence detection. The mean maximum concentration in plasma for midodrin was ca. 10 ng/ml 20-30 min after oral administration, for ST 1059 ca. 5 ng/ml after 1 h. Midodrin was eliminated with a terminal half-life of 0.5 h. The half-life of ST 1059 was determined to be 3 h. The mean area under the plasma-level vs. time curve (AUC) of ST 1059 after administration of 2.5 mg midodrin i.v. was 28.7 ng X h/ml, and as drinking solution or as tablet 25.7 and 25.6 ng X h/ml, respectively. The data of 10 volunteers could be used for the calculations of the bioavailability of ST 1059 by the AUC. Assuming an interval of equivalence of 0.75-1.25 because of the relatively small number of volunteers, the three galenical formulations are considered to be equivalent.