5-Iodotubercidin
(Synonyms: 5-碘代杀结核菌素,NSC 113939; 5-ITu) 目录号 : GC14801An adenosine kinase inhibitor
Cas No.:24386-93-4
Sample solution is provided at 25 µL, 10mM.
5-Iodotubercidin (Itu) is a purine derivative and hence an inhibitor of adenosine kinase with an IC50 value of 26 nM [1].
Adenosine kinase is important in regulating the intracellular and extracellular concentrations of adenosine and hence diverse physiological actions of adenosine [2].
In various cells such as cancer cells, persisted AMPK activation could result in apoptosis [4]. In nude mice with colon carcinoma xenograft, Itu at a dose of 2.5 mg/kg resulted in rapid tumor regression compared with the control group. At the dose of 0.625 mg/kg, Itu still inhibited tumor growth, but p53-/- tumors were resistant to Itu at this lowered dose [1].
In male Wistar rat hepatocytes, incubation with Itu resulted in concentrations of AMP and ATP at 0.39 ± 0.06 and 1.51 ± 0.10 μmol/g cell wet mass, respectively; while control incubation at 0.27 ± 0.05 and 2.25 ± 0.33 μmol/g cell wet mass, respectively. Addition of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and Itu simultaneously resulted in almost the same effect of Itu alone. It was probable that Itu inhibited adenosine kinase and blocked the synthesis of 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP) from AICAR. ZAM is a structural AMP analogue and hence mimics the effect of AMP on the AMP-activated protein kinase (AMPK) activation [3].
References:
[1]. Xin Zhang, Deyong Jia, Huijuan Liu, et al. Identification of 5-Iodotubercidin as a Genotoxic Drug with Anti-Cancer Potential. PLOS ONE, 2013, 8(5):e62527.
[2]. Jaoek Park and Radhey S. Gupta. Adenosine: A Key Link between Metabolism and Brain Activity: Adenosine Metabolism, Adenosine Kinase, and Evolution. New York: Springer Science+Business Media, 2013.
[3]. García-Villafranca J. and Castro J. Effects of 5-iodotubercidin on hepatic fatty acid metabolism mediated by the inhibition of acetyl-CoA carboxylase. Biochem. Pharmacol., 2002, 63(11):1997-2000.
[4]. Haiyan Chen, Ji-ping Wang, Richard J. Santen, et al. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells. Apoptosis, 2015, 20:821-830.
Cell experiment [1]: | |
Cell lines |
MEFs and HCT116 cells |
Preparation method |
The solubility of this compound in DMSO is > 10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 °C for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below - 20 °C for several months. |
Reacting condition |
0 ~ 2.5 μM; 8 hrs |
Applications |
In both MEFs and HCT116 cells, 5-Iodotubercidin up-regulated p53 expression. Moreover, dosage experiments indicated that 5-Iodotubercidin was able to up-regulate p53 expression at the concentration as low as 0.25 μM. In HCT116 cells with ADK knocked out, the decrease of ADK levels did not significantly change the protein levels of p53, which indicated that 5-Iodotubercidin-induced p53 upregulation was not contributed to direct inhibition of ADK. |
Animal experiment [1]: | |
Animal models |
Nude mice bearing HCT116 cells |
Dosage form |
0.625 or 2.5 mg/kg; i.p. |
Applications |
In nude mice bearing HCT116 cells, 5-Iodotubercidin at 2.5 mg/kg induced rapid tumor regression. However, 5-Iodotubercidin treatment also decreased the body weight of mice (a reduction of 6% at the end of treatment). Moreover, 5-Iodotubercidin showed inhibition on p53-/- HCT116-initiated tumors as well. At a lower dose of 0.625 mg/kg, 5-Iodotubercidin still showed an inhibition effect on tumor growth but p53-/- HCT116 exhibited resistance to 5-Iodotubercidin. |
Other notes |
Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal. |
References: [1]. Xin Zhang, Deyong Jia, Huijuan Liu, et al. Identification of 5-Iodotubercidin as a Genotoxic Drug with Anti-Cancer Potential. PLOS ONE, 2013, 8(5):e62527. |
Cas No. | 24386-93-4 | SDF | |
别名 | 5-碘代杀结核菌素,NSC 113939; 5-ITu | ||
化学名 | (2R,3R,4S,5R)-2-(4-amino-5-iodopyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)oxolane-3,4-diol | ||
Canonical SMILES | C1=C(C2=C(N1C3C(C(C(O3)CO)O)O)N=CN=C2N)I | ||
分子式 | C11H13IN4O4 | 分子量 | 392.15 |
溶解度 | <0.78 mg/mL in DMSO, <2.91 mg/mL in EtOH, <2.28 mg/mL in Water | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.55 mL | 12.7502 mL | 25.5004 mL |
5 mM | 0.51 mL | 2.55 mL | 5.1001 mL |
10 mM | 0.255 mL | 1.275 mL | 2.55 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet