5-methyl-2-HOBA (hydrochloride)
(Synonyms: 5-Me-2-HOBA, 5-methyl-2Hydroxybenzylamine) 目录号 : GC42563An isoketal scavenger
Cas No.:2044714-53-4
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
5-methyl-2-HOBA is an isoketal scavenger. It reduces angiotensin II-induced increases in systolic blood pressure in mice.
Cas No. | 2044714-53-4 | SDF | |
别名 | 5-Me-2-HOBA, 5-methyl-2Hydroxybenzylamine | ||
Canonical SMILES | NCC1=C(O)C=CC(C)=C1.Cl | ||
分子式 | C8H11NO•HCl | 分子量 | 173.6 |
溶解度 | DMF: 0.3 mg/mL,DMSO: 2.5 mg/ml,DMSO:PBS (pH 7.2) (1:1): 0.5 mg/mL,Ethanol: 0.25 mg/mL | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 5.7604 mL | 28.8018 mL | 57.6037 mL |
5 mM | 1.1521 mL | 5.7604 mL | 11.5207 mL |
10 mM | 0.576 mL | 2.8802 mL | 5.7604 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Synthesis of 2-(1,5-diaryl-1,4-pentadien-3-ylidene)-hydrazinecarboximidamide hydrochloride catalyzed by p-dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation
Ultrason Sonochem 2012 Sep;19(5):1033-8.PMID:22440718DOI:10.1016/j.ultsonch.2012.02.009.
Amidinohydrazone compounds are very important synthetic intermediates and can serve as versatile precursors in synthesis of many natural products and drug molecules. The use of ultrasound, p-dodecylbenzenesulfonic acid (DBSA) and water as solvent improved the synthesis of different 2-(1,5-diaryl-1,4-pentadien-3-ylidene)-hydrazinecarboximidamide hydrochlorides. The best reaction conditions for the condensation of 1,5-diphenyl-1,4-pentadien-3-one with aminoguanidine hydrochloride were as follows: 1,5-diphenyl-1,4-pentadiene-3-one (1, 1 mmol), aminoguanidine hydrochloride (1.1 mmol), DBSA (0.5 mmol), water 10 mL, reaction temperature 25-27°C, irradiation frequency 25 kHz. 2a was achieved in 94% yield within 2h. The other seven amidinohydrazones were obtained in 84-94% yield within 2-3h under the same conditions. Compared to the method involving catalysis by hydrochloric acid in refluxing EtOH, the advantages of present procedure are milder conditions, shorter reaction times, higher yields, and environmental friendly conditions, which make it a useful strategy for the synthesis of analogues.
1-[4-(2-Dimethylaminoethoxy)phenylcarbonyl]-3,5-Bis(3,4,5-Trimethoxybenzylidene)- 4-Piperidone hydrochloride and Related Compounds: Potent Cytotoxins Demonstrate Greater Toxicity to Neoplasms than Non- Malignant Cells
Med Chem 2022;18(9):1001-1012.PMID:35319387DOI:10.2174/1573406418666220322154110.
Background: The incidence of cancer has been increasing worldwide. Unfortunately, the drugs used in cancer chemotherapy are toxic to both neoplasms and normal tissues, while many available medications have low potencies. Conjugated α,β-unsaturated ketones differ structurally from contemporary anticancer medications , some of which have noteworthy antineoplastic properties. Objectives: This study aimed to design and synthesize highly potent cytotoxins with far greater toxicity to neoplasms than to non-malignant cells. Methods: A series of N-acyl-3,5-bis(benzylidene)-4-piperidone hydrochlorides 4a-n were prepared and evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas as well as against HGF, HPLF, and HPC non-malignant cells. QSAR and western blot analyses were performed. Results: The majority of compounds display submicromolar CC50 values towards the neoplasms; the figures for some of the compounds are below 10-7 M. In general, 4a-n have much lower CC50 values than those of melphalan, 5-fluorouracil, and methotrexate, while some compounds are equitoxic with doxorubicin. The compounds are far less toxic to the non-malignant cells, giving rise to substantial selectivity index (SI) figures. A QSAR study revealed that both potency and the SI data were controlled to a large extent by the electronic properties of the substituents in the arylidene aryl rings. Two representative compounds, 4f and 4g, caused apoptosis in HSC-2 cells. Conclusion: The compounds in series 4 are potent cytotoxins displaying tumor-selective toxicity. In particular, 4g with an average CC50 value of 0.04 μM towards four malignant cell lines and a selectivity index of 46.3 is clearly a lead molecule that should be further evaluated.
Crystallographic characterization of three cathinone hydrochlorides new on the NPS market: 1-(4-methylphenyl)-2-(pyrrolidin-1-yl)hexan-1-one (4-MPHP), 4-methyl-1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PiHP) and 2-(methylamino)-1-(4-methylphenyl)pentan-1-one (4-MPD)
Acta Crystallogr C Struct Chem 2022 Jan 1;78(Pt 1):56-62.PMID:34982049DOI:10.1107/S2053229621013401.
Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl-, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl-, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl-, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1-3.
Green Formation of Novel Pyridinyltriazole-Salicylidene Schiff Bases
Curr Org Synth 2019;16(2):309-313.PMID:31975681DOI:10.2174/1570179416666181207145951.
Aim and objective: In this work, water was used as solvent for the eco-friendly synthesis of imines under microwave irradiation. In the first step of the study, 5-pyridinyl-3-amino-1,2,4-triazole hydrochlorides were synthesized in the reaction of amino guanidine hydrochloride with different pyridine carboxylic acids under acid catalysis. A green method for 5-pyridinyl-3-amino-1,2,4-triazoles was developed with the assistance of microwave synthesis. In the second step, the eco-friendly synthesis of imines was achieved by reacting 5- pyridinyl-2H-1,2,4-triazol-3-amine hydrochlorides with salicylic aldehyde derivatives to produce 2-(5- pyridinyl-2H-1,2,4-triazol-3-ylimino)methyl)phenol imines. Materials and methods: Microwave experiments were done using a monomode Anton Paar Monowave 300 microwave reactor (2.45 GHz). Reaction temperatures were monitored by an IR sensor. Microwave experiments were carried out in sealed microwave process vials G10 with maximum reaction volume of 10 mL. Results: When alternative methods were used, it was impossible to obtain good yields from ethanol. Nevertheless, the use of water was successful for this reaction. After 1-h microwave irritation, a yellow solid was obtained in 82% yield. Conclusion: In this work an eco-friendly protocol for the synthesis of Schiff bases from 5-(pyridin-2-, 3- or 4- yl)-3-amino-1,2,4-triazoles and substituted salicylic aldehydes in water under microwave irradiation was developed. Under the found conditions the high yields for the products were achieved at short reaction time and with an easy isolation procedure.
[The bioavailability of midodrin and alpha-2,5-dimethoxyphenyl-beta-aminoethanol hydrochloride]
Arzneimittelforschung 1987 Apr;37(4):447-50.PMID:2440455doi
The pharmacokinetics of midodrin (alpha-2,5-dimethoxyphenyl-beta-glycinamidoethanol hydrochloride, ST 1085) and its main metabolite ST 1059 (alpha-2,5-dimethoxyphenyl-beta-aminoethanol hydrochloride) have been investigated in 12 male healthy volunteers. 2.5 mg midodrin hydrochloride were applied intravenously, as drinking solution or as tablet (Gutron) according to a randomized cross-over design. Plasma and urine samples collected up to 24 h after application were analyzed by high-performance liquid chromatography with fluorescence detection. The mean maximum concentration in plasma for midodrin was ca. 10 ng/ml 20-30 min after oral administration, for ST 1059 ca. 5 ng/ml after 1 h. Midodrin was eliminated with a terminal half-life of 0.5 h. The half-life of ST 1059 was determined to be 3 h. The mean area under the plasma-level vs. time curve (AUC) of ST 1059 after administration of 2.5 mg midodrin i.v. was 28.7 ng X h/ml, and as drinking solution or as tablet 25.7 and 25.6 ng X h/ml, respectively. The data of 10 volunteers could be used for the calculations of the bioavailability of ST 1059 by the AUC. Assuming an interval of equivalence of 0.75-1.25 because of the relatively small number of volunteers, the three galenical formulations are considered to be equivalent.