5'-N-Ethylcarboxamidoadenosine (hydrate)
(Synonyms: Adenosine 5'-ethylcarboxamide, NECA) 目录号 : GC46708A neuropeptide with diverse biological activities
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
5'-N-Ethylcarboxamidoadenosine (NECA) is an adenosine analog that acts as an agonist of adenosine receptors (Kis = 1,880, 6,660, and 3.5 nM for human adenosine subtypes A1, A2A, and A3, respectively).1 NECA is reported to act as a potent vasodilator and can inhibit platelet aggregation by increasing cAMP (EC50 = 3.1 µM).2,3
1.Volpini, R., Dal ben, D., Lambertucci, C., et al.N6-methoxy-2-alkynyladenosine derivatives as highly potent and selective ligands at the human A3 adenosine receptorJ. Med. Chem.50(6)1222-1230(2007) 2.de Zwart, M., Link, R., von Frijtag Drabbe KÜnzel, J.K., et al.A functional screening of adenosine analogues at the adenosine A2B receptor: a search for potent agonistsNucleosides Nucleotides17(6)969-985(1998) 3.Cusack, N.J., and Hourani, S.M.O.5'-N-ethylcarboxamidoadenosine: A potent inhibitor of human platelet aggregationBr. J. Pharmacol.72(3)443-447(1981)
Cas No. | N/A | SDF | |
别名 | Adenosine 5'-ethylcarboxamide, NECA | ||
Canonical SMILES | O[C@H]1[C@H](N2C=NC3=C2N=CN=C3N)O[C@H](C(NCC)=O)[C@H]1O.O | ||
分子式 | C12H16N6O4.XH2O | 分子量 | 308.3 |
溶解度 | DMF: 25 mg/ml,DMSO: 14 mg/ml,Ethanol: 2 mg/ml,PBS (pH 7.2): 10 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.2436 mL | 16.218 mL | 32.4359 mL |
5 mM | 0.6487 mL | 3.2436 mL | 6.4872 mL |
10 mM | 0.3244 mL | 1.6218 mL | 3.2436 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Adenosine A2A Receptor Agonist, 2- p-(2-Carboxyethyl)phenethylamino-5'- N-ethylcarboxamidoadenosine Hydrochloride hydrate, Inhibits Inflammation and Increases Fibroblast Growth Factor-2 Tissue Expression in Carrageenan-Induced Rat Paw Edema
J Pharmacol Exp Ther 2018 Feb;364(2):221-228.PMID:29212832DOI:10.1124/jpet.117.244319.
Adenosine is the final product of ATP metabolism, mainly derived from the action of 5'-nucleotidase cleavage of AMP. Cellular production of adenosine is greatly enhanced in inflamed tissues, ischemic tissues, and under hypoxia, where ATP is released from damaged cells. Much evidence has been accumulated on adenosine anti-inflammatory effects mediated through A2A receptor activation; A2A adenosine receptor has also been shown to play a role in matrix deposition and wound healing in a damaged tissue, contributing to dermal tissue protection and repair. Fibroblast growth factor-2 (FGF-2) is a powerful mitogen for fibroblast; it is expressed by several inflammatory cell types and plays a pivotal role in angiogenesis, wound healing, gastric ulcer protection. Human recombinant FGF-2 has been shown to have anti-inflammatory effects. The purpose of the present work was to investigate on the anti-inflammatory effect of systemic administration of the adenosine A2A agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS21680) in the rat model of carrageenan-induced paw edema. We found that CGS21680 inhibits inflammation induced by carrageenan injection into the rat paw, and this effect is associated to the local reduction of cytokine levels and dermal increase of FGF-2 expression. Our results suggest that FGF-2 might be involved in the anti-inflammatory and tissue protective effect due to A2A receptor activation.
Modulation by salt intake of the vascular response mediated through adenosine A(2A) receptor: role of CYP epoxygenase and soluble epoxide hydrolase
Am J Physiol Regul Integr Comp Physiol 2010 Jul;299(1):R325-33.PMID:20427718DOI:10.1152/ajpregu.00823.2009.
High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4-5 wks, concentration-response curves for ACh, 5'-N-Ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A(2A) adenosine receptor (A(2A) AR) agonist] were obtained with N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide inhibitor, 10(-4) M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10(-5) M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10(-5) M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP omega-hydroxylase (CYP4A blocker), 10(-5) M], glibenclamide (K(ATP) channel blocker; 10(-5) M) and 5-hydroxydecanoate (5-HD; mitochondrial-K(ATP) channel blocker, 10(-4) M). HS dose response to ACh (10(-7) - 10(-5) M) was not different from NS (P > 0.05). Relaxation to 10(-6) M NECA was greater in the HS group (28.4 +/- 3.9%) than in the NS group (4.1 +/- 2.3%). Relaxation to 10(-6) M CGS-21680 was also greater in HS (27.9 +/- 4.5%) than in NS (4.9 +/- 2.2%). L-NAME was able to block the dose response of ACh (10(-7) - 10(-5) M) equally in both HS and NS (P > 0.05), whereas L-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 +/- 2.0%) and 5-HD (to 8.9 +/- 2.2%), and also abolished by glibenclamide (-1.0 +/- 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 +/- 3.4%) and DDMS (to 27.2 +/- 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A(2A) AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A(1) AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet, upregulation of arterial A(1) receptor causes vasoconstriction via increased sEH and CYP4A proteins. However, in mice fed HS-containing diet, upregulation of A(2A) receptor protein triggers vascular relaxation through ATP-sensitive (K(+)) channels via upregulation of CYP2J2 enzyme.
Adenosine negatively regulates duodenal motility in mice: role of A(1) and A(2A) receptors
Br J Pharmacol 2011 Nov;164(6):1580-9.PMID:21615720DOI:10.1111/j.1476-5381.2011.01498.x.
Background and purpose: Adenosine is considered to be an important modulator of intestinal motility. This study was undertaken to investigate the role of adenosine in the modulation of contractility in the mouse duodenum and to characterize the adenosine receptor subtypes involved. Experimental approach: RT-PCR was used to investigate the expression of mRNA encoding for A(1), A(2A), A(2B) and A(3) receptors. Contractile activity was examined in vitro as changes in isometric tension. Key results: In mouse duodenum, all four classes of adenosine receptors were expressed, with the A(2B) receptor subtype being confined to the mucosal layer. Adenosine caused relaxation of mouse longitudinal duodenal muscle; this was antagonized by the A(1) receptor antagonist and mimicked by N(6) -cyclopentyladenosine (CPA), selective A(1) agonist. The relaxation induced by A(1) receptor activation was insensitive to tetrodotoxin (TTX) or N(ω) -nitro-l-arginine methyl ester (l-NAME). Adenosine also inhibited cholinergic contractions evoked by neural stimulation, effect reversed by the A(1) receptor antagonist, but not myogenic contractions induced by carbachol. CPA and 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS-21680), A(2A) receptor agonist, both inhibited the nerve-evoked cholinergic contractions. l-NAME prevented only the CGS-21680-induced effects. S-(4-Nitrobenzyl)-6-thioinosine, a nucleoside uptake inhibitor, reduced the amplitude of nerve-evoked cholinergic contractions, an effect reversed by an A(2A) receptor antagonist or l-NAME. Conclusions and implications: Adenosine can negatively regulate mouse duodenal motility either by activating A(1) inhibitory receptors located post-junctionally or controlling neurotransmitter release via A(1) or A(2A) receptors. Both receptors are available for pharmacological recruitment, even if only A(2A) receptors appear to be preferentially stimulated by endogenous adenosine.
Adenosine A2A and histamine H3 receptors interact at the cAMP/PKA pathway to modulate depolarization-evoked [3H]-GABA release from rat striato-pallidal terminals
Purinergic Signal 2019 Mar;15(1):85-93.PMID:30565027DOI:10.1007/s11302-018-9638-z.
We previously reported that the activation of histamine H3 receptors (H3Rs) selectively counteracts the facilitatory action of adenosine A2A receptors (A2ARs) on GABA release from rat globus pallidus (GP) isolated nerve terminals (synaptosomes). In this work, we examined the mechanisms likely to underlie this functional interaction. Three possibilities were explored: (a) changes in receptor affinity for agonists induced by physical A2AR/H3R interaction, (b) opposite actions of A2ARs and H3Rs on depolarization-induced Ca2+ entry, and (c) an A2AR/H3R interaction at the level of adenosine 3',5'-cyclic monophosphate (cAMP) formation. In GP synaptosomal membranes, H3R activation with immepip reduced A2AR affinity for the agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS-21680) (Ki control 4.53 nM; + immepip 9.32 nM), whereas A2AR activation increased H3R affinity for immepip (Ki control 0.63 nM; + CGS-21680 0.26 nM). Neither A2AR activation nor H3R stimulation modified calcium entry through voltage-gated calcium channels in GP synaptosomes, as evaluated by microfluorometry. A2AR-mediated facilitation of depolarization-evoked [2,3-3H]-γ-aminobutyric acid ([3H]-GABA) release from GP synaptosomes (130.4 ± 3.6% of control values) was prevented by the PKA inhibitor H-89 and mimicked by the adenylyl cyclase activator forskolin or by 8-Bromo-cAMP, a membrane permeant cAMP analogue (169.5 ± 17.3 and 149.5 ± 14.5% of controls). H3R activation failed to reduce the facilitation of [3H]-GABA release induced by 8-Bromo-cAMP. In GP slices, A2AR activation stimulated cAMP accumulation (290% of basal) and this effect was reduced (- 75%) by H3R activation. These results indicate that in striato-pallidal nerve terminals, A2ARs and H3Rs interact at the level of cAMP formation to modulate PKA activity and thus GABA release.
Elevated cAMP opposes (TNF-alpha)-induced loss in the barrier integrity of corneal endothelium
Mol Vis 2010 Sep 2;16:1781-90.PMID:20824160doi
Purpose: Elevated cyclic adenosine monophosphate (cAMP) enhances the barrier integrity of the corneal endothelium and thereby facilitates stromal hydration control, which is necessary for corneal transparency. This study investigates whether elevated cAMP is effective against the tumor necrosis factor-alpha (TNF-alpha)-induced loss of barrier integrity in monolayers of bovine corneal endothelial cells (BCEC). Methods: BCEC in primary culture were used for the study. Trans-endothelial electrical resistance (TER), a measure of barrier integrity, was determined by electrical cell-substrate impedance sensing. The changes were also ascertained by measuring paracellular permeability to fluorescein isothiocyanate (FITC)-dextran (10 kDa) across cells grown on porous culture inserts, and by immunofluorescence imaging of the apical junctional complex (AJC). The activation of p38 MAP kinase was assessed using western blotting. Results: Co-treatment with forskolin, which activates adenylate cyclase, and rolipram, which inhibits cAMP-dependent phosphodiesterase PDE4, reduced the TNF-alpha-induced increase in the flux of FITC-dextran. Similar co-treatment also prevented the TNF-alpha-induced disorganization of zona occludens-1 (ZO-1) and cadherins at the AJC. Co-treatment, as well pre-treatment, with forskolin plus rolipram prevented the TNF-alpha-induced decrease in TER. The influence of the agents was significant after 12 h of exposure to the cytokine. This effect was also mimicked by A2B agonists, adenosine and 5'-N-Ethylcarboxamidoadenosine (NECA), which are known to mobilize cAMP in BCEC. Elevated cAMP also inhibited the cytokine-induced activation of p38 MAP kinase, and further blocked the disassembly of microtubules as well as the disruption of the PAMR (peri-junctional actomyosin ring) at the AJC. Conclusions: These results suggest that elevated cAMP opposes the TNF-alpha-induced loss in barrier integrity of the corneal endothelium. This effect follows inhibition of the cytokine-induced activation of p38 MAP kinase and its downstream signaling involved in the disruption of AJC and PAMR, as well as the disassembly of microtubules.