Home>>Signaling Pathways>> DNA Damage/DNA Repair>> Deubiquitinase>>6RK73

6RK73 Sale

目录号 : GC39625

6RK73 是一种共价不可逆的特异性 UCHL1 抑制剂,IC50 为 0.23 µM。6RK73 对 UCHL3 几乎没有抑制效果 (IC50=236 µM)。6RK73 特异性抑制乳腺癌中 UCHL1 的活性。

6RK73 Chemical Structure

Cas No.:1895050-66-4

规格 价格 库存 购买数量
5mg
¥3,420.00
现货
10mg
¥5,850.00
现货
50mg
¥16,200.00
现货
100mg
¥25,200.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

6RK73 is a covalent irreversible and specific UCHL1 inhibitor with an IC50 of 0.23 µM. 6RK73 shows almost no inhibition of UCHL3 (IC50=236 µM). 6RK73 specifically inhibit UCHL1 activity in breast cancer[1].

[1]. Liu S, et al. Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin Cancer Res. 2019 Dec 19. pii: clincanres.1373.2019.

Chemical Properties

Cas No. 1895050-66-4 SDF
Canonical SMILES O=C([C@@H]1CN(C#N)CC1)NC2=NC=C(N3CCOCC3)S2
分子式 C13H17N5O2S 分子量 307.37
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.2534 mL 16.267 mL 32.5341 mL
5 mM 0.6507 mL 3.2534 mL 6.5068 mL
10 mM 0.3253 mL 1.6267 mL 3.2534 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis

Clin Cancer Res 2020 Mar 15;26(6):1460-1473.PMID:31857432DOI:10.1158/1078-0432.CCR-19-1373.

Purpose: Therapies directed to specific molecular targets are still unmet for patients with triple-negative breast cancer (TNBC). Deubiquitinases (DUB) are emerging drug targets. The identification of highly active DUBs in TNBC may lead to novel therapies. Experimental design: Using DUB activity probes, we profiled global DUB activities in 52 breast cancer cell lines and 52 patients' tumor tissues. To validate our findings in vivo, we employed both zebrafish and murine breast cancer xenograft models. Cellular and molecular mechanisms were elucidated using in vivo and in vitro biochemical methods. A specific inhibitor was synthesized, and its biochemical and biological functions were assessed in a range of assays. Finally, we used patient sera samples to investigate clinical correlations. Results: Two DUB activity profiling approaches identified UCHL1 as being highly active in TNBC cell lines and aggressive tumors. Functionally, UCHL1 promoted metastasis in zebrafish and murine breast cancer xenograft models. Mechanistically, UCHL1 facilitates TGFβ signaling-induced metastasis by protecting TGFβ type I receptor and SMAD2 from ubiquitination. We found that these responses are potently suppressed by the specific UCHL1 inhibitor, 6RK73. Furthermore, UCHL1 levels were significantly increased in sera of patients with TNBC, and highly enriched in sera exosomes as well as TNBC cell-conditioned media. UCHL1-enriched exosomes stimulated breast cancer migration and extravasation, suggesting that UCHL1 may act in a paracrine manner to promote tumor progression. Conclusions: Our DUB activity profiling identified UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis and may provide a potential target for TNBC treatment.

Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma

Clin Transl Med 2022 Apr;12(4):e797.PMID:35452181DOI:10.1002/ctm2.797.

Background: The aggressiveness of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion (Xp11.2 translocation RCC [Xp11.2 tRCC]) is age-dependent, which is similar to the overall trend of reproductive endocrine hormones. Therefore, this study focused on the effect and potential mechanism of androgen and androgen receptor (AR) on the progression of Xp11.2 tRCC. Methods: The effects of androgen and AR on the proliferation and migration of Xp11.2 tRCC cells were first evaluated utilising Xp11.2 tRCC cell lines and tissues. Because Transcription factor enhancer 3 (TFE3) fusion proteins play a key role in Xp11.2 tRCC, we focused on the regulatory role of AR and TFE3 expression and transcriptional activity. Results: When Xp11.2 tRCC cells were treated with dihydrotestosterone, increased cell proliferation, invasion and migration were observed. Compared with clear cell RCC, the positive rate of AR in Xp11.2 tRCC tissues was higher, and its expression was negatively associated with the progression-free survival of Xp11.2 tRCC. Further studies revealed that AR could positively regulate the transcriptional activity of TFE3 fusion proteins by small ubiquitin-related modifier (SUMO)-specific protease 1, inducing the deSUMOylation of TFE3 fusion. On the other hand, UCHL1 negatively regulated by AR plays a role in the deubiquitination degradation of the PRCC-TFE3 fusion protein. Therefore, the combination of the AR inhibitor MDV3100 and the UCHL1 inhibitor 6RK73 was effective in delaying the progression of Xp11.2 tRCC, especially PRCC-TFE3 tRCC. Conclusions: Androgen and AR function as facilitators in Xp11.2 tRCC progression and may be a novel therapeutic target for Xp11.2 tRCC. The combined use of AR antagonist MDV3100 and UCHL1 inhibitor 6RK73 increased both the SUMOylation and ubiquitination of the PRCC-TFE3 fusion protein.