Home>>Signaling Pathways>> Others>> Toxicology>>7-Methoxy-4-(trifluoromethyl)coumarin

7-Methoxy-4-(trifluoromethyl)coumarin Sale

(Synonyms: 7-甲氧基-4-(三氟甲基)香豆素) 目录号 : GC49248

A fluorogenic substrate for CYPs

7-Methoxy-4-(trifluoromethyl)coumarin Chemical Structure

Cas No.:575-04-2

规格 价格 库存 购买数量
50 mg
¥3,409.00
现货
100 mg
¥6,476.00
现货
250 mg
¥15,350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

7-Methoxy-4-(trifluoromethyl)coumarin is a fluorogenic substrate for cytochrome P450s (CYPs).1 Upon enzymatic cleavage by CYPs, 7-hydroxy-4-(trifluoromethyl)coumarin (HFC) is released and its fluorescence can be used to quantify CYP activity. HFC displays excitation/emission maxima of 410/510 nm, respectively.

1.Donato, M.T., JimÉnez, N., Castell, J.V., et al.Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymesDrug Metab. Dispos.32(7)699-706(2004)

Chemical Properties

Cas No. 575-04-2 SDF
别名 7-甲氧基-4-(三氟甲基)香豆素
Canonical SMILES O=C1OC2=C(C(C(F)(F)F)=C1)C=CC(OC)=C2
分子式 C11H7F3O3 分子量 244.2
溶解度 DMF: 30 mg/ml,DMF:PBS (pH 7.2) (1:2): 0.3 mg/ml,DMSO: 25 mg/ml,Ethanol: 10 mg/ml 储存条件 -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.095 mL 20.475 mL 40.95 mL
5 mM 0.819 mL 4.095 mL 8.19 mL
10 mM 0.4095 mL 2.0475 mL 4.095 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Structure-Function Analysis of Mammalian CYP2B Enzymes Using 7-Substituted Coumarin Derivatives as Probes: Utility of Crystal Structures and Molecular Modeling in Understanding Xenobiotic Metabolism

Mol Pharmacol 2016 Apr;89(4):435-45.PMID:26826176DOI:10.1124/mol.115.102111.

Crystal structures of CYP2B35 and CYP2B37 from the desert woodrat were solved in complex with 4-(4-chlorophenyl)imidazole (4-CPI). The closed conformation of CYP2B35 contained two molecules of 4-CPI within the active site, whereas the CYP2B37 structure demonstrated an open conformation with three 4-CPI molecules, one within the active site and the other two in the substrate access channel. To probe structure-function relationships of CYP2B35, CYP2B37, and the related CYP2B36, we tested the O-dealkylation of three series of related substrates-namely, 7-alkoxycoumarins, 7-alkoxy-4-(trifluoromethyl)coumarins, and 7-alkoxy-4-methylcoumarins-with a C1-C7 side chain. CYP2B35 showed the highest catalytic efficiency (kcat/KM) with 7-heptoxycoumarin as a substrate, followed by 7-hexoxycoumarin. In contrast, CYP2B37 showed the highest catalytic efficiency with 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), followed by 7-Methoxy-4-(trifluoromethyl)coumarin (7-MFC). CYP2B35 had no dealkylation activity with 7-MFC or 7-EFC. Furthermore, the new CYP2B-4-CPI-bound structures were used as templates for docking the 7-substituted coumarin derivatives, which revealed orientations consistent with the functional studies. In addition, the observation of multiple -Cl and -NH-π interactions of 4-CPI with the aromatic side chains in the CYP2B35 and CYP2B37 structures provides insight into the influence of such functional groups on CYP2B ligand binding affinity and specificity. To conclude, structural, computational, and functional analysis revealed striking differences between the active sites of CYP2B35 and CYP2B37 that will aid in the elucidation of new structure-activity relationships.

Identification and analysis of conserved sequence motifs in cytochrome P450 family 2. Functional and structural role of a motif 187RFDYKD192 in CYP2B enzymes

J Biol Chem 2008 Aug 1;283(31):21808-16.PMID:18495666DOI:10.1074/jbc.M708582200.

Using a multiple alignment of 175 cytochrome P450 (CYP) family 2 sequences, 20 conserved sequence motifs (CSMs) were identified with the program PCPMer. Functional importance of the CSM in CYP2B enzymes was assessed from available data on site-directed mutants and genetic variants. These analyses suggested an important role of the CSM 8, which corresponds to(187)RFDYKD(192) in CYP2B4. Further analysis showed that residues 187, 188, 190, and 192 have a very high rank order of conservation compared with 189 and 191. Therefore, eight mutants (R187A, R187K, F188A, D189A, Y190A, K191A, D192A, and a negative control K186A) were made in an N-terminal truncated and modified form of CYP2B4 with an internal mutation, which is termed 2B4dH/H226Y. Function was examined with the substrates 7-Methoxy-4-(trifluoromethyl)coumarin (7-MFC), 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone and with the inhibitors 4-(4-chlorophenyl)imidazole (4-CPI) and bifonazole (BIF). Compared with the template and K186A, the mutants R187A, R187K, F188A, Y190A, and D192A showed > or =2-fold altered substrate specificity, k(cat), K(m), and/or k(cat)/K(m) for 7-MFC and 7-EFC and 3- to 6-fold decreases in differential inhibition (IC(50,BIF)/IC(50,4-CPI)). Subsequently, these mutants displayed 5-12 degrees C decreases in thermal stability (T(m)) and 2-8 degrees C decreases in catalytic tolerance to temperature (T(50)) compared with the template and K186A. Furthermore, when R187A and D192A were introduced in CYP2B1dH, the P450 expression and thermal stability were decreased. In addition, R187A showed increased activity with 7-EFC and decreased IC(50,BIF)/IC(50,4-CPI) compared with 2B1dH. Analysis of long range residue-residue interactions in the CYP2B4 crystal structures indicated strong hydrogen bonds involving Glu(149)-Asn(177)-Arg(187)-Tyr(190) and Asp(192)-Val(194), which were significantly-reduced/abolished by the Arg(187)-->Ala and Asp(192)-->Alasubstitutions, respectively.

Investigation by site-directed mutagenesis of the role of cytochrome P450 2B4 non-active-site residues in protein-ligand interactions based on crystal structures of the ligand-bound enzyme

FEBS J 2012 May;279(9):1607-20.PMID:22051155DOI:10.1111/j.1742-4658.2011.08411.x.

Residues located outside the active site of cytochromes P450 2B have exhibited importance in ligand binding, structural stability and drug metabolism. However, contributions of non-active-site residues to the plasticity of these enzymes are not known. Thus, a systematic investigation was undertaken of unique residue-residue interactions found in crystal structures of P450 2B4 in complex with 4-(4-chlorophenyl)imidazole (4-CPI), a closed conformation, or in complex with bifonazole, an expanded conformation. Nineteen mutants distributed over 11 sites were constructed, expressed in Escherichia coli and purified. Most mutants showed significantly decreased expression, especially in the case of interactions found in the 4-CPI structure. Six mutants (H172A, H172F, H172Q, L437A, E474D and E474Q) were chosen for detailed functional analysis. Among these, the K(s) of H172F for bifonazole was ∼ 20 times higher than for wild-type 2B4, and the K(s) of L437A for 4-CPI was ∼ 50 times higher than for wild-type, leading to significantly altered inhibitor selectivity. Enzyme function was tested with the substrates 7-ethoxy-4-(trifluoromethyl)coumarin, 7-Methoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin (7-BR). H172F was inactive with all three substrates, and L437A did not turn over 7-BR. Furthermore, H172A, H172Q, E474D and E474Q showed large changes in k(cat)/K(M) for each of the three substrates, in some cases up to 50-fold. Concurrent molecular dynamics simulations yielded distances between some of the residues in these putative interaction pairs that are not consistent with contact. The results indicate that small changes in the protein scaffold lead to large differences in solution behavior and enzyme function.

Differential inhibition of naringenin on human and rat cytochrome P450 2E1 activity

Toxicol In Vitro 2020 Dec;69:105009.PMID:33007396DOI:10.1016/j.tiv.2020.105009.

Cytochrome P450 2E1 (CYP2E1) has been proposed as a molecular target in oxidative stress-associated metabolic diseases. Rats are chosen as model organisms in most experiments studying CYP2E1-related toxicity; however, the human relevance of these results remains unclear. To describe differences in catalysis and inhibition between human and rat CYP2E1, recombinant human and rat CYP2E1 enzymes were treated with different concentrations of naringenin (NAR, 10 nM - 1 mM), and inhibition parameters were calculated. Interspecies differences in the catalytic efficiency for O-demethylation of 7-Methoxy-4-(trifluoromethyl)coumarin were revealed (45-fold higher in human CYP2E1 than in the rat enzyme). Additionally, differences in the potency of inhibition of NAR were found (absolute half inhibitory concentration, IC50 = 204 ± 28 and 69 ± 4 μM; inhibition constant, Ki = 9 ± 2 and 161 ± 20 μM in human and rat CYP2E1, respectively). Although NAR exhibited a noncompetitive mechanism of inhibition of both CYP2E1 enzymes, this compound is an irreversible inhibitor of rat CYP2E1 and a reversible inhibitor of the human enzyme. Molecular docking suggested that differences in the potency of inhibition and time dependence between species could be attributable to the differential interactions of NAR with access channels to the CYP2E1 catalytic site. These results highlight the importance of finding the appropriate model to improve the predictability of animal-based assays for human risk assessment.