A-834735 Degradant
目录号 : GC41482An Analytical Reference Standard
Cas No.:2244599-90-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
A-834735 is an indole-derived cannabinoid (CB) with a 3-tetramethylcyclopropylmethanone substituent. It acts as a full agonist at both the central CB1 and peripheral CB2 receptors in rat with Ki values of 4.6 and 0.31 nM, respectively, and EC50 values of 12 and 0.21 nM, respectively. A-834735 readily crosses the blood-brain barrier, dose-dependently reversing thermal hyperalgesia without adverse side effects in a rat neuropathic pain model. A-834735 degradant is a common impurity observed during GC-MS analysis of samples containing A-834735. The opened ring of the degradant is presumed to be produced during heating of A-834735. This structure gives rise to a prominent fragment ion that is 15 amu greater than the base peak of A-834735. This pattern is consistent with McLafferty rearrangement of the degradant which does not occur with the parent compound.
Cas No. | 2244599-90-2 | SDF | |
Canonical SMILES | O=C(C1=CN(CC2CCOCC2)C3=C1C=CC=C3)CC(C)(C)C(C)=C | ||
分子式 | C22H29NO2 | 分子量 | 339.5 |
溶解度 | DMF: 20 mg/ml,DMSO: 10 mg/ml,Ethanol: 30 mg/ml,Ethanol:PBS (pH 7.2) (1:3): 0.25 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.9455 mL | 14.7275 mL | 29.4551 mL |
5 mM | 0.5891 mL | 2.9455 mL | 5.891 mL |
10 mM | 0.2946 mL | 1.4728 mL | 2.9455 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Comparison of the discriminative stimulus and response rate effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids in female and male rats
Drug Alcohol Depend 2017 Mar 1;172:51-59.PMID:28130989DOI:PMC5309167
Background: Women report greater sensitivity to the subjective effects of Δ9-tetrahydrocannabinol (THC). Similarly, female rodents tend to be more sensitive to some pharmacological effects of THC and synthetic cannabinoids. This study examined sex differences in discriminative stimulus and response rate effects of THC and synthetic cannabinoids in rats. Methods: A cumulative dosing THC discrimination procedure was utilized to evaluate sex differences in the discriminative stimulus effects of THC and three synthetic cannabinoids: CP47,497, WIN55,212-2, and JWH-018. Sex differences in the effects of these four compounds and a degradant of A-834735 on response rates also were assessed in a food-reinforced discrete dosing procedure. Results: Females required a lower training dose than males for acquisition of the discrimination. Further, THC was more potent at producing rimonabant-reversible discriminative stimulus and response rate effects in females. While synthetic cannabinoids were more potent in producing THC-like effects than was THC in female rats, greater discrepancies were observed in male rats. Similar sensitivity to the response rate-decreasing effects induced by most, but not all (A-834735 Degradant), synthetic cannabinoids was seen in both sexes. Conclusions: This study represents one of the first direct comparisons of sex differences in THC discrimination. Females were more sensitive to THC's effects, which may be related, in part, to sex differences in THC metabolism. Synthetic cannabinoids were more potent than THC in both sexes, but were considerably more so in male than in female rats. Future research should emphasize further characterization of sex differences in cannabinoid pharmacology.