Home>>Signaling Pathways>> Tyrosine Kinase>> c-MET>>ABN401

ABN401 Sale

目录号 : GC65894

ABN401 是一种高效且具有选择性的 ATP 竞争性 c-MET 抑制剂,IC50 为 10 nM。ABN401 对嗜 MET 的癌细胞具有细胞毒性。ABN401 可以抑制肿瘤组织中 c-MET 的磷酸化。ABN401 可用于抗癌研究。

ABN401 Chemical Structure

Cas No.:2242563-15-9

规格 价格 库存 购买数量
10mg
¥9,450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ABN401 is a highly potent and selective ATP-competitive c-MET inhibitor with an IC50 value of 10 nM. ABN401 has cytotoxic activity against MET-addicted cancer cells. ABN401 can inhibit c-MET phosphorylation in tumor tissues. ABN401 can be used for researching anticancer[1].

Chemical Properties

Cas No. 2242563-15-9 SDF Download SDF
分子式 C29H34N12O 分子量 566.66
溶解度 储存条件 4°C, away from moisture and light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7647 mL 8.8236 mL 17.6473 mL
5 mM 0.3529 mL 1.7647 mL 3.5295 mL
10 mM 0.1765 mL 0.8824 mL 1.7647 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Therapeutic Efficacy of ABN401, a Highly Potent and Selective MET Inhibitor, Based on Diagnostic Biomarker Test in MET-Addicted Cancer

Cancers (Basel) 2020 Jun 15;12(6):1575.PMID:32549194DOI:10.3390/cancers12061575.

The receptor tyrosine kinase c-MET regulates processes essential for tissue remodeling and mammalian development. The dysregulation of c-MET signaling plays a role in tumorigenesis. The aberrant activation of c-MET, such as that caused by gene amplification or mutations, is associated with many cancers. c-MET is therefore an attractive therapeutic target, and inhibitors are being tested in clinical trials. However, inappropriate patient selection criteria, such as low amplification or expression level cut-off values, have led to the failure of clinical trials. To include patients who respond to MET inhibitors, the selection criteria must include MET oncogenic addiction. Here, the efficacy of ABN401, a MET inhibitor, was investigated using histopathologic and genetic analyses in MET-addicted cancer cell lines and xenograft models. ABN401 was highly selective for 571 kinases, and it inhibited c-MET activity and its downstream signaling pathway. We performed pharmacokinetic profiling of ABN401 and defined the dose and treatment duration of ABN401 required to inhibit c-MET phosphorylation in xenograft models. The results show that the efficacy of ABN401 is associated with MET status and they highlight the importance of determining the cut-off values. The results suggest that clinical trials need to establish the characteristics of each sample and their correlations with the efficacy of MET inhibitors.

Solubility Determination of c-Met Inhibitor in Solvent Mixtures and Mathematical Modeling to Develop Nanosuspension Formulation

Molecules 2021 Jan 13;26(2):390.PMID:33450987DOI:10.3390/molecules26020390.

The solubility and dissolution thermodynamics of new c-Met inhibitor, ABN401, were determined in eleven solvents and Transcutol® HP-water mixture (TWM) from 298.15 to 318.15 K. The experimental solubilities were validated using five mathematical models, namely modified Apelblat, van't Hoff, Buchowski-Ksiazaczak λh, Yalkowsky, and Jouyban-Acree van't Hoff models. The experimental results were correlated and utilized further to investigate the feasibility of nanosuspension formation using liquid anti-solvent precipitation. Thermodynamic solubility of ABN401 increased significantly with the increase in temperature and maximum solubility was obtained with Transcutol® HP while low solubility in was obtained water. An activity coefficient study indicated that high molecular interaction was observed in ABN401-Transcutol® HP (THP). The solubility increased proportionately as the mole fraction of Transcutol® HP increased in TWM, which was also supported by a solvent effect study. The result suggested endothermic and entropy-driven dissolution. Based on the solubility, nanosuspension was designed with Transcutol® HP as solvent, and water as anti-solvent. The mean particle size of nanosuspension decreased to 43.05 nm when the mole fraction of ABN401 in THP, and mole fraction of ABN401 in TWM mixture were decreased to 0.04 and 0.1. The ultrasonicated nanosuspension appeared to give comparatively higher dissolution than micronized nanosuspension and provide a candidate formulation for in vivo purposes.

New Preclinical Development of a c-Met Inhibitor and Its Combined Anti-Tumor Effect in c-Met-Amplified NSCLC

Pharmaceutics 2020 Feb 3;12(2):121.PMID:32028611DOI:10.3390/pharmaceutics12020121.

c-Met is a receptor tyrosine kinase with no commercially available product despite being a pivotal target in cancer progression. Unlike other c-Met inhibitors that fail clinically, ABN401 is a newly synthesized c-Met inhibitor that is not potentially degraded by aldehyde oxidase (AO) in human liver cytosol. This study aimed to determine the physicochemical stability, pharmacokinetics in beagle dogs, and therapeutic effect of ABN401 in a c-Met-amplified non-small-cell lung cancer (NSCLC) patient-derived xenograft (PDX) model. ABN401 was found to be a weak basic compound, with pKa and log P values of 7.49 and 2.46, respectively. It is poorly water-soluble but soluble at acidic pH. The accelerated storage stability is dependent on temperature, but the purity remains at over 97% after 6 months. The bioavailability is approximately 30% in dogs and it is highly efficient in the PDX model, achieving around 90% tumor growth inhibition in combination with erlotinib. These observations indicate that the compound is acceptable for the next phase of trials.