Home>>Ac-VEID-AMC

Ac-VEID-AMC Sale

(Synonyms: 乙酰基缬氨酰谷氨酰异亮氨酰天冬氨酸-7-氨基-4-甲基香豆素) 目录号 : GC42717

A caspase-6 fluorogenic substrate

Ac-VEID-AMC Chemical Structure

Cas No.:219137-97-0

规格 价格 库存 购买数量
1mg
¥1,010.00
现货
5mg
¥2,021.00
现货
10mg
¥3,546.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Ac-VEID-AMC is a fluorogenic substrate based on the caspase-6 cleavage site in lamin A at amino acids VEID during apoptosis. It has also been reported to be cleaved by related proteases, including caspase-8. Caspase activity can be quantified by fluorescent detection of free AMC (also known as 7-amino-4-methylcoumarin), which is excited at 340-360 nm and emits at 440-460 nm.

Chemical Properties

Cas No. 219137-97-0 SDF
别名 乙酰基缬氨酰谷氨酰异亮氨酰天冬氨酸-7-氨基-4-甲基香豆素
Canonical SMILES CC(C1=CC=C(C=C1O2)NC([C@@H](NC(C(NC([C@@H](NC([C@@H](NC(C)=O)C(C)C)=O)CCC(O)=O)=O)[C@H](CC)C)=O)CC(O)=O)=O)=CC2=O
分子式 C32H43N5O11 分子量 673.7
溶解度 DMSO: 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4843 mL 7.4217 mL 14.8434 mL
5 mM 0.2969 mL 1.4843 mL 2.9687 mL
10 mM 0.1484 mL 0.7422 mL 1.4843 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Changes of caspase activities involved in apoptosis of a macrophage-like cell line J774.1/JA-4 treated with lipopolysaccharide (LPS) and cycloheximide

Biol Pharm Bull 2000 Feb;23(2):140-4.PMID:10706374DOI:10.1248/bpb.23.140.

The addition of lipopolysaccharide (LPS) together with cycloheximide (CHX) induced apoptosis in a subline of a J774.1 macrophage-like cell line, JA-4, as judged by terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL)-staining and poly(adenosine 5'-diphosphate (ADP)-ribose) polymerase (PARP)-cleavage. Caspase activities were examined in these macrophages in vitro using fluorogenic substrates such as acetyl-DEVD-aminomethyl coumarine (Ac-DEVD-AMC, caspase-3-like), acetyl-YVAD-aminomethyl coumarine (Ac-YVAD-AMC, caspase-1-like), acetyl-VEID-aminomethyl coumarine (Ac-VEID-AMC, caspase-6-like), and carbobenzoxy-IETD-aminofluoro coumarine (Z-IETD-AFC; caspase-8-like). Kinetic studies revealed these caspase activities with different Km and Vmax values in extracts of apoptotic macrophages. In the course of apoptosis, caspase-3-like activity increased first at 75 min, simultaneously with the appearance of TUNEL staining and prior to PARP cleavage, and then caspase-6 and 8-like activities increased at 90 and 105 min, respectively. However, caspase-1-like activity did not change throughout the experiment. Furthermore, removal of LPS and CHX by extensive washing of the cells for 60 min completely abolished the apoptosis and the subsequent release of lactate dehydrogenase (LDH) during additional incubation until 4 h after LPS addition. However, washing of the cells after 75 min or later resulted in the progress of apoptosis and LDH release, which was coordinated with the elevation of caspase-3-like activity at 60 min and that of caspase-6 or 8-like activity at 90 min, but not with that of caspase-1-like activity. These results suggest that caspase-3-like activity represents the most apical caspase among these caspases in terms of the intiation of apoptosis in macrophages treated with LPS and CHX. In the present study, we also provide evidence on the relatively low specificities of a series of caspase inhibitors other than acetyl-DEVD-aldehyde (Ac-DEVD-CHO) which specifically inhibited the caspase-3-like activity.

Je-chun-jun induced apoptosis of human cervical carcinoma HeLa cells

Acta Pharmacol Sin 2004 Oct;25(10):1372-9.PMID:15456542doi

Aim: To study the mechanism of je-chun-jun (JCJ)-inducing the apoptosis of the human cervical carcinoma, HeLa cells. Methods: The cell viability was assessed using MTT assay. The optical density was measured at 570 nm. The caspase activity was measured using 50 mmol/L of fluorogenic substrate, AC-DEVD-AMC (caspase-3), Ac-VEID-AMC (caspase-8) or AC-LEHD-AFC (caspase-9). To confirm the expression of proteins, Western blotting was performed. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of JCJ. For the cell cycle analysis, HeLa cells were incubated with Propidium iodide (PI) solution. Fluorescence intensity of cell cycle was measured using flow cytometry system. Results: The loss of viability occurred following the exposure of 10 g/L JCJ. Cells treated with 10 g/L JCJ for 3 d exhibited the apoptotic morphology (brightly blue-fluorescent condensed nuclei by Hoechst 33258-staining) and the reduction of cell volume. Cells incubated with JCJ for 48 h were arrested at the G1 phase of cell cycle and their G1 checkpoint related gene products such as cyclin D1 were transiently decreased. We showed that JCJ induced the p38 MAPK activation in HeLa cells. The p38 MAPK inhibitor, SB203580 protected Hela cells from the JCJ-induced death as well as intervened the JCJ-induced accumulation of cells at the G1 phase. In contrast, MEK1 (-ERK upstream) inhibitor, PD98059 had no effect on HeLa cells. Conclusion: JCJ induced cell cycle arrest and apoptosis of HeLa cells through p38 MAPK pathway.