Acetyl phosphate(lithium potassium)
(Synonyms: 乙酰磷酸锂钾盐) 目录号 : GC60555乙酰磷酸锂钾(Acetyl phosphate(lithium potassium) )是一种有机金属化合物,用作磷酰基供体,它常用于蛋白质磷酸化反应。
Cas No.:94249-01-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
本方案为Acetyl phosphate(lithium potassium)用于蛋白质磷酸化反应提供一个指导,请根据您的具体需要进行修改。
1. 溶液配制
(1)储存液:用纯水溶解Acetyl phosphate(lithium potassium),建议浓度为100 mM。
注意:未使用的储存液分装后在-20℃避光保存,避免反复冻融。
(2)工作液:用实验缓冲液稀释储存液到所需的工作浓度,例如50mM。
注意:最佳的工作浓度请根据实际情况调整或参阅文献自行设置梯度浓度进行摸索。工作液必须现配现用。
2.使用Acetyl phosphate(lithium potassium)进行蛋白质磷酸化实验方案[1](来自文献,仅做参考)
(1)蛋白质稀释:将蛋白质稀释到包含以下组分的缓冲液中:100mM Tris-HCl (pH7.4)、10mM MgCl2、125mM KCl、50mM Acetyl phosphate(lithium potassium)
(2)蛋白质浓度:最终蛋白质浓度设定为100μg/ml。
(3)孵育:将上述混合物在30°C下孵育1小时。
(4)缓冲液更换:使用离心滤器将缓冲液更换为20mM Tris-HCl(pH7.4)。
(5)对照组处理:对照组按照相同的方法处理蛋白质,但稀释缓冲液中不含Acetyl phosphate(lithium potassium)。
注意:确保所有溶液都是新鲜配制的,并且所有设备都是干净的,以避免污染。避免直接接触反应试剂。
References:
[1]Li D Y, Han J T, Zhang M Y, et al. The two-component system RstA/RstB regulates expression of multiple efflux pumps and influences anaerobic nitrate respiration in Pseudomonas fluorescens[J]. Msystems, 2021, 6(6): e00911-21.
Acetyl phosphate(lithium potassium) is an organometallic compound used as a phosphoryl donor and is commonly used in protein phosphorylation reactions[1]. Acetyl phosphate (lithium potassium) is an endogenous compound involved in taurine and hypotaurine metabolism and pyruvate metabolism[2]. Acetyl phosphate (lithium potassium) is produced from sulfoacetaldehyde and converted to acetyl-CoA and acetate by phosphate acetyltransferase and acetate kinase, respectively[3]. Acetyl phosphate (lithium potassium) is also an intermediate in pyruvate metabolism[4]. Acetyl phosphate (lithium potassium) is suitable as an acetyl phosphate source, which is useful for reducing the formation of inorganic monophosphate byproducts by replacing inorganic oligophosphates in phosphatase-catalyzed transphosphorylation[5].
References:
[1]Li D Y, Han J T, Zhang M Y, et al. The two-component system RstA/RstB regulates expression of multiple efflux pumps and influences anaerobic nitrate respiration in Pseudomonas fluorescens[J]. Msystems, 2021, 6(6): e00911-21.
[2]Nciri R, Desmoulin F, Allagui M S, et al. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress[J]. International Journal of Neuropsychopharmacology, 2013, 16(2): 365-376.
[3]Ruff J, Denger K, Cook A M. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation[J]. Biochemical Journal, 2003, 369(2): 275-285.
[4]Fan T W M, Yuan P, Lane A N, et al. Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions[J]. Metabolomics, 2010, 6: 165-179.
[5]Johnson D C, Widlanski T S. Overview of the synthesis of nucleoside phosphates and polyphosphates[J]. Current protocols in nucleic acid chemistry, 2003, 15(1): 13.1. 1-13.1. 31.
乙酰磷酸锂钾(Acetyl phosphate(lithium potassium) )是一种有机金属化合物,用作磷酰基供体,它常用于蛋白质磷酸化反应[1]。Acetyl phosphate(lithium potassium)是一种内源性化合物,参与牛磺酸和亚牛磺酸代谢以及丙酮酸代谢[2]。Acetyl phosphate(lithium potassium)由磺基乙醛产生,分别通过磷酸乙酰转移酶和乙酸激酶转化为乙酰辅酶A和乙酸[3]。Acetyl phosphate(lithium potassium)也是丙酮酸代谢的中间体[4]。Acetyl phosphate(lithium potassium)适合作为乙酰磷酸源,它适用于通过替代磷酸酶催化的转磷酸化中的无机低聚磷酸盐来减少无机单磷酸盐副产物的形成[5]。
Cas No. | 94249-01-1 | SDF | |
别名 | 乙酰磷酸锂钾盐 | ||
Canonical SMILES | O=P([O-])([O-])OC(C)=O.[K+].[Li+] | ||
分子式 | C2H3KLiO5P | 分子量 | 184.06 |
溶解度 | Water: 50 mg/mL (271.65 mM) | 储存条件 | Store at -20°C,protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 5.433 mL | 27.1651 mL | 54.3301 mL |
5 mM | 1.0866 mL | 5.433 mL | 10.866 mL |
10 mM | 0.5433 mL | 2.7165 mL | 5.433 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Potassium fluxes in dialyzed squid axons
J Gen Physiol 1969 Jun;53(6):704-40.PMID:5795918DOI:10.1085/jgp.53.6.704.
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP](i) = 1 microM, [Na](i) = 0, K influx was 6 +/- 0.6 pmole/cm(2) sec; an increase to [ATP](i) = 4 mM gave an influx of 8 +/- 0.5 pmole/cm(2) sec, while [ATP](i) 4, [Na](i) 80 gave a K influx of 19 +/- 0.7 pmole/cm(2) sec (all measurements at approximately 16 degrees C). Strophanthidin (10 microM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP](i), [Na](i), and [K](o) was measured; an [ATP](i) of 30 microM gave a K influx about half that at physiological concentrations (2-3 mM). About 7 mM [Na](i) yielded half the K influx found at 80 mM [Na](i). The ATP-dependent K influx responded linearly to [K](o) from 1-20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were Acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.
Electrical potential accelerates the E1P(Na)----E2P conformational transition of (Na,K)-ATPase in reconstituted vesicles
J Biol Chem 1986 Sep 25;261(27):12437-40.PMID:3017974doi
We have used renal (Na,K)-ATPase, covalently labeled with fluorescein, and phospholipid vesicles reconstituted with labeled enzyme, to detect conformational transitions induced by Acetyl phosphate in the presence of Mg2+ and Na+ ions. Equilibrium fluorescence measurements show quenching of the fluorescein fluorescence, which is thought to reflect conversion of the initial E1 form to the phosphorylated E2P form. These fluorescence changes occur on inside-out-oriented pumps. The rates of acetyl phosphate-induced fluorescence changes have been measured using a stopped-flow fluorimeter. The rate of fluorescence quenching (1.5-3 s-1) is a measure of the rate of the E1P(Na)----E2P transition. The quenching is preceded by a fast fluorescence increase (12.3 +/- 4 s-1) associated with phosphorylation of E1 to E1P(Na), shown clearly in experiments with enzyme treated with oligomycin. Oligomycin greatly reduces the rate of the fluorescence quenching (0.044 +/- 0.01 s-1). Using potassium-loaded vesicles treated with valinomycin or lithium-loaded vesicles treated with Li+ ionophore N,N'-diheptyl-N,N'-didiethyl ether, 5,5-dimethyl-3,7-dioxanonanediamide in order to induce electrical diffusion potentials, negative inside, the rates of the fluorescence quenching are accelerated by up to 4-fold. The experiments demonstrate that the conformational transition E1P(Na)----E2P, associated with transport of 3 Na+ ions, is a voltage-sensitive reaction, carrying a net positive charge. This confirms a prediction based on transport experiments. In experiments with fluorescein-labeled (Na,K)-ATPase, the use of Acetyl phosphate rather than ATP, which does not bind, provides a valuable tool to detect fluorescence signals accompanying steps in the turnover cycle.