Actinopyrone A
(Synonyms: (+)-Actinopyrone A, SS 1538A) 目录号 : GC41316A pyrone with diverse biological activities
Cas No.:88378-59-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Actinopyrone A is a pyrone isolated from S. pactum with diverse biological activities. It has selective and potent antimicrobial activity against H. pylori (MIC = 0.1 ng/mL) with no activity against other Gram-negative bacteria including E. coli, K. pneumoniae, P. aeruginosa, and B. fragilis. Actinopyrone A also mildly inhibits growth of Gram-positive bacteria and dermatophytes with MIC values ranging from <6.25 to 25 μg/mL. Intravenous administration of actinopyrone A (30 μg/kg) increases coronary blood flow in dogs by 196.2%.
Cas No. | 88378-59-0 | SDF | |
别名 | (+)-Actinopyrone A, SS 1538A | ||
Canonical SMILES | COC1=C(C)C(C(C)=C(C/C=C(C)/C/C=C/C(C)=C/[C@@H](C)[C@@H](O)/C(C)=C/C)O1)=O | ||
分子式 | C25H36O4 | 分子量 | 400.6 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.4963 mL | 12.4813 mL | 24.9626 mL |
5 mM | 0.4993 mL | 2.4963 mL | 4.9925 mL |
10 mM | 0.2496 mL | 1.2481 mL | 2.4963 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Total synthesis of an anti-Helicobacter pylori agent, Actinopyrone A
Chem Asian J 2008 Sep 1;3(8-9):1415-21.PMID:18633953DOI:10.1002/asia.200800109.
Actinopyrone A, an anti-Helicobacter pylori agent, was synthesized in nine steps from a silyl dienol ether. A vinylogous anti-aldol was stereoselectively synthesized by our developed remote stereoinduction methodology; coupling of this with a sulfone and a phosphonate species led to the construction of a vinylpyrone compound. This was submitted to reductive de-conjugation to give Actinopyrone A. The absolute stereochemistry of Actinopyrone A was determined to have the configuration 14R,15R.
New Antimicrobial Phenyl Alkenoic Acids Isolated from an Oil Palm Rhizosphere-Associated Actinomycete, Streptomyces palmae CMU-AB204T
Microorganisms 2020 Mar 1;8(3):350.PMID:32121612DOI:10.3390/microorganisms8030350.
Basal stem rot (BSR), or Ganoderma rot disease, is the most serious disease associated with the oil palm plant of Southeast Asian countries. A basidiomycetous fungus, Ganoderma boninense, is the causative microbe of this disease. To control BSR in oil palm plantations, biological control agents are gaining attention as a major alternative to chemical fungicides. In the course of searching for effective actinomycetes as potential biological control agents for BSR, Streptomyces palmae CMU-AB204T was isolated from oil palm rhizosphere soil collected on the campus of Chiang Mai University. The culture broth of this strain showed significant antimicrobial activities against several bacteria and phytopathogenic fungi including G. boninense. Antifungal and antibacterial compounds were isolated by antimicrobial activity-guided purification using chromatographic methods. Their structures were elucidated by spectroscopic techniques, including Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), Ultraviolet (UV), and Infrared (IR) analyses. The current study isolated new phenyl alkenoic acids 1-6 and three known compounds, anguinomycin A (7), leptomycin A (8), and Actinopyrone A (9) as antimicrobial agents. Compounds 1 and 2 displayed broad antifungal activity, though they did not show antibacterial activity. Compounds 3 and 4 revealed a strong antibacterial activity against both Gram-positive and Gram-negative bacteria including the phytopathogenic strain Xanthomonas campestris pv. oryzae. Compounds 7-9 displayed antifungal activity against Ganoderma. Thus, the antifungal compounds obtained in this study may play a role in protecting oil palm plants from Ganoderma infection with the strain S. palmae CMU-AB204T.