Adelmidrol
(Synonyms: 阿地米屈) 目录号 : GC31693Adelmidrol is an analogue of palmitoylethanolamide (PEA) with anti-inflammatory activities.
Cas No.:1675-66-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Animal experiment: | Mice[1]Male adult CD1 mice (25-30 g) and male mice (20-27 g) are placed in a controlled environment and maintained on a 12-hour light/dark cycle with food and water available ad libitum. Mice are casually divided into the following groups (10 in each group) (1)Sham+vehicle group: Vehicle solution (saline) is given by oral administration for 4 days. (2) Sham+Adelmidrol (10 mg/kg): Administered o.s. for 4 days. (3) DNBS+vehicle: Mice are injected by DNBS as described, and vehicle (saline) is given o.s. each day for 4 days, starting 60 minutes after the injection of DNBS. (4) DNBS+Adelmidrol (10 mg/kg): Mice are injected by DNBS as described, and Adelmidrol (10 mg/kg) is given o.s. each day, starting 60 minutes after administration of DNBS[1]. |
References: [1]. Cordaro M, et al. Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Inflammatory Bowel Disease. Mol Pharmacol. 2016 Nov;90(5):549-561. |
Adelmidrol is an analogue of palmitoylethanolamide (PEA) with anti-inflammatory activities.
Cas No. | 1675-66-7 | SDF | |
别名 | 阿地米屈 | ||
Canonical SMILES | O=C(NCCO)CCCCCCCC(NCCO)=O | ||
分子式 | C13H26N2O4 | 分子量 | 274.36 |
溶解度 | DMSO : ≥ 34 mg/mL (123.92 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.6448 mL | 18.2242 mL | 36.4485 mL |
5 mM | 0.729 mL | 3.6448 mL | 7.2897 mL |
10 mM | 0.3645 mL | 1.8224 mL | 3.6448 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Targeting Neuroinflammation in Osteoarthritis with Intra-Articular Adelmidrol
Neuroinflammation is an emerging therapeutic target in chronic degenerative and autoimmune diseases, such as osteoarthritis (OA) and rheumatoid arthritis. Mast cells (MCs) play a key role in the homeostasis of joints and the activation of MCs induces the release of a huge number of mediators, which fuel the fire of neuroinflammation. Particularly, synovial MCs release substances which accelerate the degradation of the extra-cellular matrix causing morphological joint changes and cartilage damage and inducing the proliferation of synovial fibroblasts, angiogenesis, and the sprouting of sensory nerve fibers, which mediate chronic pain. Palmitoylethanolamide (PEA) is a well-known MCs modulator, but in osteoarthritic joints, its levels are significantly reduced. Adelmidrol, a synthetic derivate of azelaic acid belonging to the ALIAmides family, is a PEA enhancer. Preclinical and clinical investigations showed that the intra-articular administration of Adelmidrol significantly reduced MC infiltration, pro-inflammatory cytokine release, and cartilage degeneration. The combination of 1% high molecular weight hyaluronic acid and 2% Adelmidrol has been effectively used for knee osteoarthritis and, a significant improvement in analgesia and functionality has been recorded.
Adelmidrol protects against non-alcoholic steatohepatitis in mice
Non-alcoholic steatohepatitis (NASH) is a more serious condition of non-alcoholic fatty liver disease (NAFLD), a widely spread type of chronic liver disease. Oxidative stress and inflammation induced by lipotoxicity are involved in hepatic injury of NASH. This work aimed to investigate the possible protective effect of adelmidrol (PPAR α and γ agonist) against NASH in mice.Thirty-six mice were divided into six equal groups: sham-operated, NASH, vehicle, adelmidrol 5 mg/kg, adelmidrol 10 mg/kg, and adelmidrol 20 mg /kg. Adelmidrol was injected intraperitoneally once daily for 7 weeks along with high-fat diet (HFD). Mice were euthanized, and livers were removed for light microscopic examination and detection of reduced glutathione (GSH) content while blood samples were collected for assessment of transaminases (ALT& AST), tumor necrosis factor (TNF-α), matrix metalloproteinase-1 (MMP-1), adiponectin, cholesterol, high-density lipoprotein (HDL), and triglyceride. NASH mice had increments in MMP-1, TNF-α, AST, ALT, triglyceride, and cholesterol levels while HDL, adiponectin levels, and GSH content were decreased with vesicular steatosis, lobular inflammation, hepatocyte ballooning, and degeneration. Administration of adelmidrol decreased MMP-1, TNF-α, AST, ALT, triglyceride, and cholesterol levels while increased HDL, adiponectin levels, and GSH content as well as ameliorated the histopathological changes. Adelmidrol protected mice from NASH; an effect could be attributed to its anti-inflammatory and antioxidant actions.
Oral Adelmidrol Administration Up-Regulates Palmitoylethanolamide Production in Mice Colon and Duodenum through a PPAR-γ Independent Action
Adelmidrol is a promising palmitoylethanolamide (PEA) analog which displayed up-and-coming anti-inflammatory properties in several inflammatory conditions. Recent studies demonstrated that Adelmidrol is an in vitro enhancer of PEA endogenous production, through the so called "entourage" effect. The present study investigated the ability of Adelmidrol (1 and 10 mg/Kg per os) to increase the endogenous level of PEA in the duodenum and colon of mice after 21-day oral administration in the presence and absence of PPAR-γ inhibitor (1 mg/kg). The level of PEA was analyzed by HPLC-MS. The expression of PEA-related enzymatic machinery was evaluated by western blot and RT-PCR analysis. Our findings demonstrated that Adelmidrol significantly increased PEA levels in the duodenum and colon in a dose/time-dependent manner. We also revealed that Adelmidrol up regulated the enzymatic machinery responsible for PEA metabolism and catabolism. Interestingly, the use of the selective irreversible PPAR-γ antagonist did not affect either PEA intestinal levels or expression/transcription of PEA metabolic enzymes following Adelmidrol administration. The "entourage effect" with Adelmidrol as an enhancer of PEA was thus PPAR-γ-independent. The findings suggest that Adelmidrol can maximize a PEA therapeutic-based approach in several intestinal morbidities.
Adelmidrol: A New Promising Antioxidant and Anti-Inflammatory Therapeutic Tool in Pulmonary Fibrosis
Background: Chronic pulmonary diseases are characterized by airway remodeling due to complex multicellular responses and the production of free oxygen radicals. They lead to a progressive decline of pulmonary functions. Adelmidrol is an analogue of palmitoylethanolamide (PEA), which is a well-known anti-inflammatory and anti-oxidant compound. In this study, we investigated the efficacy of adelmidrol (10 mg/Kg) for bleomycin-induced pulmonary fibrosis in mice.
Methods: Bleomycin intratracheal administration was performed on the first day and for the following twenty-one days, mice were treated with adelmidrol (10 mg/Kg).
Results: The survival rate and body weight gain were recorded daily. At the end of the experiment, adelmidrol-administered animals showed reduced airway infiltration by inflammatory cells, Myeloperoxidase (MPO) activity, and pro-inflammatory cytokine overexpression (IL,6 IL-1β, TNF-α, and TGF-1β). Moreover, adelmidrol treatment was able to manage the significant incapacity of antioxidants and elevation of the oxidant burden, as shown by the MDA, SOD, and GSH levels and decreased nitric oxide production. It was also able to significantly modulate the JAK2/STAT3 and IκBα/NF-kB pathway. Histologic examination of the lung tissues showed reduced sample injury, mast cell degranulation, chymase activity, and collagen deposition.
Conclusions: In sum, our results propose adelmidrol as a therapeutic approach in the treatment of pulmonary fibrosis.
Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury
Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.