ADT-OH
(Synonyms: 5-(4-羟基苯基)-3H-1,2-二硫杂环戊烯-3-硫酮,5-(4-Hydroxyphenyl)-3H-1,2-dithiole-3-thione; ACS 1) 目录号 : GC42742A synthetic H2S donor used in making chimeras
Cas No.:18274-81-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
ADT-OH is a derivative of anethole dithiolethione (ADT) and synthetic hydrogen sulfide (H2S) donor. It can be readily esterified with other moieties. For example, it can be coupled with therapeutics like nonsteroidal anti-inflammatory drugs, as in the generation of ATB-343 . ADT-OH has also been linked with a mitochondria-targeting motif to produce AP-39 , which selectively increases mitochondrial H2S levels. ADT-OH is used both in cells and in animals for comparative studies with derived chimeras.
Cas No. | 18274-81-2 | SDF | |
别名 | 5-(4-羟基苯基)-3H-1,2-二硫杂环戊烯-3-硫酮,5-(4-Hydroxyphenyl)-3H-1,2-dithiole-3-thione; ACS 1 | ||
Canonical SMILES | OC1=CC=C(C2=CC(SS2)=S)C=C1 | ||
分子式 | C9H6OS3 | 分子量 | 226.3 |
溶解度 | DMF: 15 mg/ml,DMF:PBS(pH 7.2)(1:1): 0.5 mg/ml,DMSO: 5 mg/ml,Ethanol: 1 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 4.4189 mL | 22.0946 mL | 44.1891 mL |
5 mM | 0.8838 mL | 4.4189 mL | 8.8378 mL |
10 mM | 0.4419 mL | 2.2095 mL | 4.4189 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
ADT-OH inhibits malignant melanoma metastasis in mice via suppressing CSE/CBS and FAK/Paxillin signaling pathway
Acta Pharmacol Sin 2022 Jul;43(7):1829-1842.PMID:PMC9253130DOI:10.1038/s41401-021-00799-x.
Hydrogen sulfide (H2S) is widely recognized as the third endogenous gas signaling molecule and may play a key role in cancer biological processes. ADT-OH (5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thione) is one of the most widely used organic donors for the slow release of H2S and considered to be a potential anticancer compound. In this study, we investigated the antimetastatic effects of ADT-OH in highly metastatic melanoma cells. A tail-vein-metastasis model was established by injecting B16F10 and A375 cells into the tail veins of mice, whereas a mouse footpad-injection model was established by injecting B16F10 cells into mouse footpads. We showed that administration of ADT-OH significantly inhibited the migration and invasion of melanoma cells in the three different animal models. We further showed that ADT-OH dose-dependently inhibited the migration and invasion of B16F10, B16F1 and A375 melanoma cells as evaluated by wound healing and Transwell assays in vitro. LC-MS/MS and bioinformatics analyses revealed that ADT-OH treatment inhibited the EMT process in B16F10 and A375 cells by reducing the expression of FAK and the downstream response protein Paxillin. Overexpression of FAK reversed the inhibitory effects of ADT-OH on melanoma cell migration. Moreover, after ADT-OH treatment, melanoma cells showed abnormal expression of the H2S-producing enzymes CSE/CBS and the AKT signaling pathways. In addition, ADT-OH significantly suppressed the proliferation of melanoma cells. Collectively, these results demonstrate that ADT-OH inhibits the EMT process in melanoma cells by suppressing the CSE/CBS and FAK signaling pathways, thereby exerting its antimetastatic activity. ADT-OH may be used as an antimetastatic agent in the future.
ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD
Cell Death Dis 2020 Jan 16;11(1):33.PMID:31949127DOI:10.1038/s41419-020-2222-9.
Hydrogen sulfide (H2S) is now widely considered the third endogenous gasotransmitter and plays critical roles in cancer biological processes. In this study, we demonstrate that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), the most widely used moiety for synthesising slow-releasing H2S donors, induces melanoma cell death in vitro and in vivo. Consistent with previous reports, ADT-OH inhibited IκBɑ degradation, resulting in reduced NF-κB activation and subsequent downregulation of the NF-κB-targeted anti-apoptotic proteins XIAP and Bcl-2. More importantly, we found that ADT-OH suppressed the ubiquitin-induced degradation of FADD by downregulating the expression of MKRN1, an E3 ubiquitin ligase of FADD. In addition, ADT-OH had no significant therapeutic effect on FADD-knockout B16F0 cells or FADD-knockdown A375 cells. Based on these findings, we evaluated the combined effects of ADT-OH treatment and FADD overexpression on melanoma cell death in vivo using a mouse xenograft model. As expected, tumour-specific delivery of FADD through a recombinant Salmonella strain, VNP-FADD, combined with low-dose ADT-OH treatment significantly inhibited tumour growth and induced cancer cell apoptosis. Taken together, our data suggest that ADT-OH is a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.
Role of the hydrogen sulfide-releasing donor ADT-OH in the regulation of mammal neural precursor cells
J Cell Physiol 2022 Jul;237(7):2877-2887.PMID:35342944DOI:10.1002/jcp.30726.
Neural precursor cells (NPCs) generate new neurons to supplement neuronal loss as well as to repair damaged neural circuits. Therefore, NPCs have potential applications in a variety of neurological diseases, such as spinal cord injury, traumatic brain injury, and glaucoma. Specifically, improving NPCs proliferation and manipulating their differentiated cell types can be a beneficial therapy for a variety of these diseases. ADT-OH is a slow-releasing organic H2 S donor that produces a slow and continuous release of H2 S to maintain normal brain functions. In this study, we aimed to explore the effect of ADT-OH on NPCs. Our results demonstrated that ADT-OH promotes self-renewal and antiapoptosis ability of cultured NPCs. Additionally, it facilitates more NPCs to differentiate into neurons and oligodendrocytes, while inhibiting their differentiation into astrocytes. Furthermore, it enhances axonal growth. Moreover, we discovered that the mRNA and protein expression of β-catenin, TCF7L2, c-Myc, Ngn1, and Ngn2, which are key genes that regulate NPCs self-renewal and differentiation, were increased in the presence of ADT-OH. Altogether, these results indicate that ADT-OH may be a promising drug to regulate the neurogenesis of NPCs, and needs to be studied in the future for clinical application potential.
Transdermal Delivery of a Hydrogen Sulphide Donor, ADT-OH Using Aqueous Gel Formulations for the Treatment of Impaired Vascular Function: an Ex Vivo Study
Pharm Res 2022 Feb;39(2):341-352.PMID:35088236DOI:10.1007/s11095-021-03164-z.
Purpose: Hydrogen sulphide (H2S) is an important signalling molecule involved in the regulation of several physiological and pathophysiological processes. The objective of this study was to investigate the feasibility of transdermal delivery of ADT-OH, a H2S donor, by investigating the transdermal flux of aqueous gels loaded with penetration enhancers or liposomes. Furthermore, we explored the ability of permeated ADT-OH to promote angiogenesis and mitochondrial bioenergetics in HUVEC cells. Methods: Aqueous hypromellose gels (5% w/v) were prepared with up to 10% v/v propylene glycol (PG) or deformable liposomes with 0.025% w/w ADT-OH. ADT-OH permeation from formulations across excised murine skin into PBS was quantified over 24 h using HPLC-UV detection. Media was collected and applied to HUVEC cells to evidence ADT-OH functionality following permeation. Tube formation assays were performed as indicative of angiogenesis and mitochondrial oxygen consumption was evaluated using a Seahorse XF24. Results: Increasing the loading of PG caused an increase in ADT-OH permeation rate across skin and a decrease in dermal drug retention whereas liposomal gels produced a slow-release profile. Treatment of HUVEC's using conditioned media collected from the ADT-OH loaded permeation studies enhanced tube formation and the basal oxygen consumption rates after 30 min of treatment. Conclusions: These findings demonstrate that transdermal delivery of ADT-OH may provide a promising approach in the treatment of impaired vascular function. Gels prepared with 10% v/v PG have the potential for use in conditions requiring rapid H2S release whereas liposomal loaded gels for treatment requiring sustained H2S release.
HA-ADT suppresses esophageal squamous cell carcinoma progression via apoptosis promotion and autophagy inhibition
Exp Cell Res 2022 Nov 1;420(1):113341.PMID:36075445DOI:10.1016/j.yexcr.2022.113341.
Esophageal squamous cell carcinoma (ESCC) is a major cause of cancer-related deaths. We have previously connected a non-sulfated glycosaminoglycan, hyaluronic acid (HA), with a common hydrogen sulfide (H2S) donor, 5-(4-hydroxyphenyl)-3H-1,2-dithiol-3-thione (ADT-OH), to reconstruct a novel conjugate, HA-ADT. In this study, we determined the effect of HA-ADT on the growth of ESCC. Our data suggested that HA-ADT exerted more potent effects than sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor) on inhibiting the viability, proliferation, migration, and invasion of human ESCC cells. HA-ADT increased apoptosis by suppressing the protein expressions of phospho (p)-Ser473-protein kinase B (PKB/AKT), p-Tyr199/Tyr458-phosphatidylinositol 3-kinase (PI3K), and p-Ser2448-mammalian target of rapamycin (mTOR), but suppressed autophagy through the inhibition of the protein levels of p-Ser552-β-catenin, p-Ser9-glycogen synthase kinase-3β (GSK-3β), and Wnt3a in human ESCC cells. In addition, HA-ADT was more effective in terms of the growth inhibition of human ESCC xenograft tumor than NaHS and GYY4137. In conclusion, HA-ADT can suppress ESCC progression via apoptosis promotion and autophagy inhibition. HA-ADT might be efficacious for the treatment of cancer.