Fmoc-Gly-OH
(Synonyms: Fmoc-甘氨酸,Fmoc glycine; N-(9-Fluorenylmethoxycarbonyl)glycine; N-Fluorenylmethoxycarbonylglycine; NPC 14692; NSC 334288; [[[(9H-Fluoren-9-yl)methoxy]carbonyl]amino]acetic acid) 目录号 : GA10072Fmoc-Gly-OH (Fmoc glycine) 是一种 Fmoc 保护的甘氨酸衍生物,可用于合成化合物。
Cas No.:29022-11-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Cas No. | 29022-11-5 | SDF | |
别名 | Fmoc-甘氨酸,Fmoc glycine; N-(9-Fluorenylmethoxycarbonyl)glycine; N-Fluorenylmethoxycarbonylglycine; NPC 14692; NSC 334288; [[[(9H-Fluoren-9-yl)methoxy]carbonyl]amino]acetic acid | ||
化学名 | 2-(9H-fluoren-9-ylmethoxycarbonylamino)acetic acid | ||
Canonical SMILES | C1=CC=C2C(=C1)C(C3=CC=CC=C32)COC(=O)NCC(=O)O | ||
分子式 | C17H15NO4 | 分子量 | 297.3 |
溶解度 | ≥ 29.7mg/mL in DMSO, ≥ 25 mg/mL in EtOH with ultrasonic | 储存条件 | Store at RT |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3636 mL | 16.818 mL | 33.6361 mL |
5 mM | 0.6727 mL | 3.3636 mL | 6.7272 mL |
10 mM | 0.3364 mL | 1.6818 mL | 3.3636 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Dicyclopropylmethyl peptide backbone protectant
Org Lett2009 Aug 20;11(16):3718-21.PMID:19719204DOI:10.1021/ol901310q.
The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.
Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc-Glycine
Molecules2020 Sep 1;25(17):3983.PMID:32882948DOI:10.3390/molecules25173983.
In this paper, we described the synthesis procedure of TiO2@SiO2 core-shell modified with 3-(aminopropyl)trimethoxysilane (APTMS). The chemical attachment of Fmoc-glycine (Fmoc-Gly-OH) at the surface of the core-shell structure was performed to determine the amount of active amino groups on the basis of the amount of Fmoc group calculation. We characterized nanostructures using various methods: transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the modification effectiveness. The ultraviolet-visible spectroscopy (UV-vis) measurement was adopted for the quantitative determination of amino groups present on the TiO2@SiO2 core-shell surface by determination of Fmoc substitution. The nanomaterials were functionalized by Fmoc-Gly-OH and then the fluorenylmethyloxycarbonyl (Fmoc) group was cleaved using 20% (v/v) solution of piperidine in DMF. This reaction led to the formation of a dibenzofulvene-piperidine adduct enabling the estimation of free Fmoc groups by measurement the maximum absorption at 289 and 301 nm using UV-vis spectroscopy. The calculations of Fmoc loading on core-shell materials was performed using different molar absorption coefficient: 5800 and 6089 dm3 × mol-1 × cm-1 for λ = 289 nm and both 7800 and 8021 dm3 × mol-1 × cm-1 for λ = 301 nm. The obtained results indicate that amount of Fmoc groups present on TiO2@SiO2-(CH2)3-NH2 was calculated at 6 to 9 µmol/g. Furthermore, all measurements were compared with Fmoc-Gly-OH used as the model sample.