Anti-Mouse PD-L1 Antibody
目录号 : GC66337Anti-Mouse PD-L1 Antibody 是抗小鼠 PD-L1 的 IgG2b 抗体抑制剂,宿主是 Rat。
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
-
Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Anti-Mouse PD-L1 Antibody is an anti-mouse PD-L1 IgG2b antibody inhibitor derived from host Rat.
Cas No. | SDF | Download SDF | |
分子式 | 分子量 | 49/23kDa | |
溶解度 | 储存条件 | Store at -80°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 20.4082 mL | 102.0408 mL | 204.0816 mL |
5 mM | 4.0816 mL | 20.4082 mL | 40.8163 mL |
10 mM | 2.0408 mL | 10.2041 mL | 20.4082 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Identification and Characterization of MEDI4736, an Antagonistic Anti-PD-L1 Monoclonal Antibody
Cancer Immunol Res 2015 Sep;3(9):1052-62.PMID:25943534DOI:10.1158/2326-6066.CIR-14-0191.
Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an Anti-Mouse PD-L1 Antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti-PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti-CTLA-4, anti-PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR.
89Zr-Labeled Anti-PD-L1 Antibody Fragment for Evaluating In Vivo PD-L1 Levels in Melanoma Mouse Model
Cancer Biother Radiopharm 2020 Oct;35(8):549-557.PMID:32315549DOI:10.1089/cbr.2019.3056.
The rise of programmed death-1 (PD-1)/PD-L1 immune checkpoint inhibitor therapy has been one of the most promising developments in melanoma research. However, not all the melanoma patients respond to such immune checkpoint blockade. There is a great need of biomarkers for appropriate melanoma patient selection and therapeutic efficacy monitoring. The objective of this study is to develop a novel radiolabeled anti-PD-L1 antibody fragment, as an imaging biomarker, for evaluating the in vivo PD-L1 levels in melanoma. The Df-conjugated F(ab')2 fragment of the Anti-Mouse PD-L1 Antibody was successfully synthesized and radiolabeled with 89Zr. Both Df-F(ab')2 and 89Zr-Df-F(ab')2 maintained the nano-molar murine PD-L1 targeting specificity and affinity. 89Zr-Df-F(ab')2 showed less uptake in normal liver tissue in mice compared with its full antibody counterpart 89Zr-Df-anti-PD-L1. Positron emission tomography (PET)/computed tomography images clearly showed that 89Zr-Df-F(ab')2 possessed superior pharmacokinetics and imaging contrast over the radiolabeled full antibody, with much earlier and higher tumor uptake (5.5 times more at 2 h post injection) and much lower liver background (51% reduction at 2 h post injection). The specific and high murine PD-L1-targeting uptake at tumor foci coupled with fast clearance of 89Zr-Df-F(ab')2 highlighted its potential for in vivo PET imaging of murine PD-L1 levels and future development of radiolabeled anti-human PD-L1 fragment for potential application in melanoma patients.
Immuno-SPECT/PET imaging with radioiodinated anti-PD-L1 antibody to evaluate PD-L1 expression in immune-competent murine models and PDX model of lung adenocarcinoma
Nucl Med Biol 2020 Jul-Aug;86-87:44-51.PMID:32474281DOI:10.1016/j.nucmedbio.2020.05.006.
Objective: Accurate evaluation of tumor programmed death ligand 1 (PD-L1) expression can assist in predicting whether a patient will respond to anti-PD-L1 therapy. In this study, we aimed to develop stable radioiodinated PD-L1 antibodies that can be used for PD-L1 targeted SPECT/PET imaging. Methods: Radioiodination was accomplished via a prosthetic group ([131I]SIB or [124I]SIB) to give radioiodinated anti-human PD-L1 and Anti-Mouse PD-L1 Antibody (anti-PD-L1 and anti-PD-L1M). MicroSPECT/PET imaging and biodistribution of radioiodinated antibodies were studied in two immune-competent murine models (B16F10 and 4T1 syngeneic tumor models) and patient-derived xenograft (PDX) model of lung adenocarcinoma to evaluate the feasibility of identifying tumor PD-L1 expression. Results: Radioiodinated PD-L1 antibodies had high radiochemical purity (>99%) and favorable stability in vivo. There was high uptake of [131I]SIB-anti-PD-L1M in both 4T1 and B16F10 syngeneic tumors when injected with 5.5 MBq radiotracers containing 200 μg anti-mouse-PD-L1. The presence of excess unlabeled anti-PD-L1 antibody increased [131I]SIB-anti-PD-L1M uptake in tumors. The highly specific PD-L1-positive tumor uptake detected by SPECT imaging indicated that radioiodinated antibody could be used for PD-L1 expression imaging. In addition, PET imaging of the PDX model was performed with [124I]SIB-anti-PD-L1, which showed high signal intensity in tumors and optimal contrast between tumor and muscle (tumor-to-muscle ratios at 6 h p.i. and 24 h p.i. were 2.5 and 5.3, respectively). Conclusions: This study provides an efficient strategy for synthesizing stable radioiodinated PD-L1 antibodies with excellent pharmacokinetics to identify PD-L1 expression in tumors.
A newly discovered PD-L1 B-cell epitope peptide vaccine (PDL1-Vaxx) exhibits potent immune responses and effective anti-tumor immunity in multiple syngeneic mice models and (synergizes) in combination with a dual HER-2 B-cell vaccine (B-Vaxx)
Oncoimmunology 2022 Oct 5;11(1):2127691.PMID:36211807DOI:10.1080/2162402X.2022.2127691.
Blockade of checkpoint receptors with monoclonal antibodies against CTLA-4, PD-1 and PD-L1 has shown great clinical success in several cancer subtypes, yielding unprecedented responses albeit a significant number of patients develop resistance and remain refractory. Both PD-1/PD-L1 and HER-2 signaling pathway inhibitors have limited efficacy and exhibits significant toxicities that limit their use. Ongoing clinical studies support the need for rationale combination of immuno-oncology agents to make a significant impact in the lives of cancer patients. We introduce the development of a novel chimeric PD-L1 B-cell peptide epitope vaccine (amino acid 130-147) linked to a "promiscuous" T cell measles virus fusion (MVF) peptide (MVF-PD-L1(130); PDL1-Vaxx) or linked to tetanus toxoid (TT3) TT3-PD-L1 (130) via a linker (GPSL). These vaccine constructs are highly immunogenic and antigenic in several syngeneic animal models. The PD-L1 vaccines elicited high titers of polyclonal antibodies that inhibit tumor growth in multiple syngeneic cancer models, eliciting antibodies of different subtypes IgG1, IgG2a, IgG2b and IgG3, induced PD-1/PD-L1 blockade, decreased proliferation, induced apoptosis and caused ADCC of tumor cells. The PDL1-Vaxx induces similar inhibition of tumor growth versus the standard Anti-Mouse PD-L1 Antibody in both syngeneic BALB/c and C57BL/6J mouse models. The combination of PDL1-Vaxx with HER-2 vaccine B-Vaxx demonstrated synergistic tumor inhibition in D2F2/E2 carcinoma cell line. The anti-PDL1-Vaxx block PD-1/PD-L1 interaction and significantly prolonged anti-tumor responses in multiple syngeneic tumor models. The combination of HER-2 vaccine (B-Vaxx) with either PDL1-Vaxx or PD1-Vaxx demonstrated synergistic tumor inhibition. PDL1-Vaxx is a promising novel safe checkpoint inhibitor vaccine.
Distinct Biomarker Profiles and TCR Sequence Diversity Characterize the Response to PD-L1 Blockade in a Mouse Melanoma Model
Mol Cancer Res 2021 Aug;19(8):1422-1436.PMID:33888600DOI:10.1158/1541-7786.MCR-20-0881.
Only a subset of patients responds to immune checkpoint blockade (ICB) in melanoma. A preclinical model recapitulating the clinical activity of ICB would provide a valuable platform for mechanistic studies. We used melanoma tumors arising from an Hgftg;Cdk4R24C/R24C genetically engineered mouse (GEM) model to evaluate the efficacy of an Anti-Mouse PD-L1 Antibody similar to the anti-human PD-L1 antibodies durvalumab and atezolizumab. Consistent with clinical observations for ICB in melanoma, anti-PD-L1 treatment elicited complete and durable response in a subset of melanoma-bearing mice. We also observed tumor growth delay or regression followed by recurrence. For early treatment assessment, we analyzed gene expression profiles, T-cell infiltration, and T-cell receptor (TCR) signatures in regressing tumors compared with tumors exhibiting no response to anti-PD-L1 treatment. We found that CD8+ T-cell tumor infiltration corresponded to response to treatment, and that anti-PD-L1 gene signature response indicated an increase in antigen processing and presentation, cytokine-cytokine receptor interaction, and natural killer cell-mediated cytotoxicity. TCR sequence data suggest that an anti-PD-L1-mediated melanoma regression response requires not only an expansion of the TCR repertoire that is unique to individual mice, but also tumor access to the appropriate TCRs. Thus, this melanoma model recapitulated the variable response to ICB observed in patients and exhibited biomarkers that differentiate between early response and resistance to treatment, providing a valuable platform for prediction of successful immunotherapy. IMPLICATIONS: Our melanoma model recapitulates the variable response to anti-PD-L1 observed in patients and exhibits biomarkers that characterize early antibody response, including expansion of the TCR repertoire.