ARCC-4
目录号 : GC60594ARCC-4是基于PROTAC技术的,纳摩尔级的雄激素受体(AR)降解剂,其D50值为5 nM。ARCC-4是一种基于enzalutamide的vonHippel-Lindau(VHL)招募的ARPROTAC。ARCC-4能有效降解与抗雄激素研究相关的AR突变。
Cas No.:1973403-00-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
ARCC-4 is a low-nanomolar androgen receptor (AR) degrader based on PROTAC, with a DC50 of 5 nM. ARCC-4 is an enzalutamide-based von Hippel-Lindau (VHL)-recruiting AR PROTAC and outperforms enzalutamide. ARCC-4 effectively degrades clinically relevant AR mutants associated with antiandrogen therapy[1].
ARCC-4 induces apoptosis and inhibiting proliferation of AR-amplified prostate cancer cells[1].ARCC-4 enhances protein-protein interactions between AR and VHL, thereby promoting the association of the trimeric complex[1].ARCC-4 (0.1-10,000 nM; 20 hours) potently degrades AR with a D50 of 5 nM and Dmax of over 95%[1].ARCC-4 (100 nM; 12 hours) shows near complete AR degradation (>98%) in prostate cancer cells[1]. ARCC-4 selectively degrades AR via the proteasome but not PR-A or PR-B suppression[1].ARCC-4 shows efficacy against clinically relevant AR mutations[1].ARCC-4 maintains activity despite elevated androgen levels[1]. Western Blot Analysis[1] Cell Line: VCaP cells
[1]. Salami J, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018 Aug 2;1:100.
Cas No. | 1973403-00-7 | SDF | |
Canonical SMILES | O=C(NCC1=CC=C(C2=C(C)N=CS2)C=C1)[C@H]3N(C([C@H](C(C)(C)C)NC(COCCCCOC4=CC=C(C5=CC=C(N(C(N6C7=CC=C(C#N)C(C(F)(F)F)=C7)=S)C(C)(C)C6=O)C=C5)C=C4)=O)=O)C[C@H](O)C3 | ||
分子式 | C53H56F3N7O7S2 | 分子量 | 1024.18 |
溶解度 | DMSO: 200 mg/mL (195.28 mM); Water: < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 0.9764 mL | 4.882 mL | 9.7639 mL |
5 mM | 0.1953 mL | 0.9764 mL | 1.9528 mL |
10 mM | 0.0976 mL | 0.4882 mL | 0.9764 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance
Commun Biol 2018 Aug 2;1:100.PMID:30271980DOI:10.1038/s42003-018-0105-8.
The androgen receptor is a major driver of prostate cancer and inhibition of its transcriptional activity using competitive antagonists, such as enzalutamide remains a frontline therapy for prostate cancer management. However, the majority of patients eventually develop drug resistance. We propose that targeting the androgen receptor for degradation via Proteolysis Targeting Chimeras (PROTACs) will be a better therapeutic strategy for targeting androgen receptor signaling in prostate cancer cells. Here we perform a head-to-head comparison between a currently approved androgen receptor antagonist enzalutamide, and its PROTAC derivative, ARCC-4, across different cellular models of prostate cancer drug resistance. ARCC-4 is a low-nanomolar androgen receptor degrader able to degrade about 95% of cellular androgen receptors. ARCC-4 inhibits prostate tumor cell proliferation, degrades clinically relevant androgen receptor point mutants and unlike enzalutamide, retains antiproliferative effect in a high androgen environment. Thus, ARCC-4 exemplifies how protein degradation can address the drug resistance hurdles of enzalutamide.
Solubility Enhanced Formulation Approaches to Overcome Oral Delivery Obstacles of PROTACs
Pharmaceutics 2023 Jan 3;15(1):156.PMID:36678785DOI:10.3390/pharmaceutics15010156.
PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development. Therefore, we investigated the solubility enhancement employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing, HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs were subsequently characterized with respect to their solid state via differential scanning calorimetry (DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome the low solubility of PROTACs.