Arterolane (OZ 277)
(Synonyms: 青蒿氧烷; OZ 277; RBx 11160) 目录号 : GC32231An antimalarial agent
Cas No.:664338-39-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Arterolane is an antimalarial agent.1 It is active against 10 strains of P. falciparum in vitro, including chloroquine- and pyrimethamine-resistant strains, with IC50 values ranging from 0.43 to 1.6 ng/ml. Arterolane (10 mg/kg per day for three days) is curative in 67% of mice in a model of P. berghei infection.
1.Vennerstrom, J.L., Arbe-Barnes, S., Brun, R., et al.Identification of an antimalarial synthetic trioxolane drug development candidateNature430(7002)900-904(2004)
Cas No. | 664338-39-0 | SDF | |
别名 | 青蒿氧烷; OZ 277; RBx 11160 | ||
Canonical SMILES | O=C(NCC(N)(C)C)C[C@H](CC1)CC[C@]21OO[C@]3(O2)[C@H]4C[C@@H]5C[C@H](C4)C[C@H]3C5 | ||
分子式 | C22H36N2O4 | 分子量 | 392.53 |
溶解度 | DMSO : 100 mg/mL (254.76 mM) | 储存条件 | Store at -20°C, protect from light, stored under nitrogen |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.5476 mL | 12.7379 mL | 25.4758 mL |
5 mM | 0.5095 mL | 2.5476 mL | 5.0952 mL |
10 mM | 0.2548 mL | 1.2738 mL | 2.5476 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Fixed dose combination of Arterolane and piperaquine: a newer prospect in antimalarial therapy
Ann Med Health Sci Res 2014 Jul;4(4):466-71.PMID:25221689DOI:10.4103/2141-9248.139270.
Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, Arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms "Malaria," "Arterolane," "OZ277," "Piperaquine," and "Artemisinin combination therapy." A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines.
Drug delivery to the malaria parasite using an arterolane-like scaffold
ChemMedChem 2015 Jan;10(1):47-51.PMID:25314098DOI:10.1002/cmdc.201402362.
Antimalarial agents artemisinin and Arterolane act via initial reduction of a peroxide bond in a process likely mediated by ferrous iron sources in the parasite. Here, we report the synthesis and antiplasmodial activity of arterolane-like 1,2,4-trioxolanes specifically designed to release a tethered drug species within the malaria parasite. Compared with our earlier drug delivery scaffolds, these new arterolane-inspired systems are of significantly decreased molecular weight and possess superior metabolic stability. We describe an efficient, concise and scalable synthesis of the new systems, and demonstrate the use of the aminonucleoside antibiotic puromycin as a chemo/biomarker to validate successful drug release in live Plasmodium falciparum parasites. Together, the improved drug-like properties, more efficient synthesis, and proof of concept using puromycin, suggests these new molecules as improved vehicles for targeted drug delivery to the malaria parasite.
Stochastic Protein Alkylation by Antimalarial Peroxides
ACS Infect Dis 2019 Dec 13;5(12):2067-2075.PMID:31626733DOI:10.1021/acsinfecdis.9b00264.
Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides Arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.
Arterolane-piperaquine-mefloquine versus arterolane-piperaquine and artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children: a single-centre, open-label, randomised, non-inferiority trial
Lancet Infect Dis 2021 Oct;21(10):1395-1406.PMID:34111412DOI:10.1016/S1473-3099(20)30929-4.
Background: Triple antimalarial combination therapies combine potent and rapidly cleared artemisinins or related synthetic ozonides, such as Arterolane, with two, more slowly eliminated partner drugs to reduce the risk of resistance. We aimed to assess the safety, tolerability, and efficacy of arterolane-piperaquine-mefloquine versus arterolane-piperaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Kenyan children. Methods: In this single-centre, open-label, randomised, non-inferiority trial done in Kilifi County Hospital, Kilifi, coastal Kenya, children with uncomplicated Plasmodium falciparum malaria were recruited. Eligible patients were aged 2-12 years and had an asexual parasitaemia of 5000-250 000 parasites per 渭L. The exclusion criteria included the presence of an acute illness other than malaria, the inability to tolerate oral medications, treatment with an artemisinin derivative in the previous 7 days, a known hypersensitivity or contraindication to any of the study drugs, and a QT interval corrected for heart rate (QTc interval) longer than 450 ms. Patients were randomly assigned (1:1:1), by use of blocks of six, nine, and 12, and opaque, sealed, and sequentially numbered envelopes, to receive either arterolane-piperaquine, arterolane-piperaquine-mefloquine, or artemether-lumefantrine. Laboratory staff, but not the patients, the patients' parents or caregivers, clinical or medical officers, nurses, or trial statistician, were masked to the intervention groups. For 3 days, oral artemether-lumefantrine was administered twice daily (target dose 5-24 mg/kg of bodyweight of artemether and 29-144 mg/kg of bodyweight of lumefantrine), and oral arterolane-piperaquine (Arterolane dose 4 mg/kg of bodyweight; piperaquine dose 20 mg/kg of bodyweight) and oral arterolane-piperaquine-mefloquine (mefloquine dose 8 mg/kg of bodyweight) were administered once daily. All patients received 0路25 mg/kg of bodyweight of oral primaquine at hour 24. All patients were admitted to Kilifi County Hospital for at least 3 consecutive days and followed up at day 7 and, thereafter, weekly for up to 42 days. The primary endpoint was 42-day PCR-corrected efficacy, defined as the absence of treatment failure in the first 42 days post-treatment, of arterolane-piperaquine-mefloquine versus artemether-lumefantrine, and, along with safety, was analysed in the intention-to-treat population, which comprised all patients who received at least one dose of a study drug. The 42-day PCR-corrected efficacy of arterolane-piperaquine-mefloquine versus arterolane-piperaquine was an important secondary endpoint and was also analysed in the intention-to-treat population. The non-inferiority margin for the risk difference between treatments was -7%. The study is registered in ClinicalTrials.gov, NCT03452475, and is completed. Findings: Between March 7, 2018, and May 2, 2019, 533 children with P falciparum were screened, of whom 217 were randomly assigned to receive either arterolane-piperaquine (n=73), arterolane-piperaquine-mefloquine (n=72), or artemether-lumefantrine (n=72) and comprised the intention-to-treat population. The 42-day PCR-corrected efficacy after treatment with arterolane-piperaquine-mefloquine (100%, 95% CI 95-100; 72/72) was non-inferior to that after treatment with artemether-lumefantrine (96%, 95% CI 88-99; 69/72; risk difference 4%, 95% CI 0-9; p=0路25). The 42-day PCR-corrected efficacy of arterolane-piperaquine-mefloquine was non-inferior to that of arterolane-piperaquine (100%, 95% CI 95-100; 73/73; risk difference 0%). Vomiting rates in the first hour post-drug administration were significantly higher in patients treated with arterolane-piperaquine (5%, 95% CI 2-9; ten of 203 drug administrations; p=0路0013) or arterolane-piperaquine-mefloquine (5%, 3-9; 11 of 209 drug administrations; p=0路0006) than in patients treated with artemether-lumefantrine (1%, 0-2; three of 415 drug administrations). Upper respiratory tract complaints (n=26 for artemether-lumefantrine; n=19 for arterolane-piperaquine-mefloquine; n=23 for arterolane-piperaquine), headache (n=13; n=4; n=5), and abdominal pain (n=7; n=5; n=5) were the most frequently reported adverse events. There were no deaths. Interpretation: This study shows that arterolane-piperaquine-mefloquine is an efficacious and safe treatment for uncomplicated falciparum malaria in children and could potentially be used to prevent or delay the emergence of antimalarial resistance. Funding: UK Department for International Development, The Wellcome Trust, The Bill & Melinda Gates Foundation, Sun Pharmaceutical Industries.
Enantioselective Synthesis and in Vivo Evaluation of Regioisomeric Analogues of the Antimalarial Arterolane
J Med Chem 2017 Jul 27;60(14):6400-6407.PMID:28692297DOI:10.1021/acs.jmedchem.7b00699.
We describe the first systematic study of antimalarial 1,2,4-trioxolanes bearing a substitution pattern regioisomeric to that of Arterolane. Conformational analysis suggested that trans-3鈥?substituted trioxolanes would exhibit Fe(II) reactivity and antiparasitic activity similar to that achieved with canonical cis-4鈥?substitution. The chiral 3鈥?analogues were prepared as single stereoisomers and evaluated alongside their 4鈥?congeners against cultured malaria parasites and in a murine malaria model. As predicted, the trans-3鈥?analogues exhibited in vitro antiplasmodial activity remarkably similar to that of their cis-4鈥?comparators. In contrast, efficacy in the Plasmodium berghei mouse model differed dramatically for some of the congeneric pairs. The best of the novel 3鈥?analogues (e.g., 12i) outperformed Arterolane itself, producing cures in mice after a single oral exposure. Overall, this study suggests new avenues for modulating Fe(II) reactivity and the pharmacokinetic and pharmacodynamic properties of 1,2,4-trioxolane antimalarials.