Home>>Infectious Disease>> Bacterial Diseases>>Asperlactone

Asperlactone Sale

(Synonyms: (5R)-5-[(1S)-1-羟基乙基]-3-[(2S,3S)-3-甲基-2-环氧乙烷基]-2(5H)-呋喃酮) 目录号 : GC40682

An antibiotic with nematicidal, insecticidal, antibacterial, and antifungal activity

Asperlactone Chemical Structure

Cas No.:76375-62-7

规格 价格 库存 购买数量
1mg
¥1,508.00
现货
5mg
¥6,030.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Asperlactone is a nematicidal, insecticidal, antibacterial, and antifungal polyketide metabolite produced from A. westerdijkiae.

Chemical Properties

Cas No. 76375-62-7 SDF
别名 (5R)-5-[(1S)-1-羟基乙基]-3-[(2S,3S)-3-甲基-2-环氧乙烷基]-2(5H)-呋喃酮
Canonical SMILES O=C1C([C@@H]2O[C@H]2C)=C[C@@]([C@H](C)O)([H])O1
分子式 C9H12O4 分子量 184.2
溶解度 DMSO: soluble,Methanol: soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.4289 mL 27.1444 mL 54.2888 mL
5 mM 1.0858 mL 5.4289 mL 10.8578 mL
10 mM 0.5429 mL 2.7144 mL 5.4289 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Cloning and characterization of novel methylsalicylic acid synthase gene involved in the biosynthesis of isoasperlactone and Asperlactone in Aspergillus westerdijkiae

Fungal Genet Biol 2009 Oct;46(10):742-9.PMID:19589392DOI:10.1016/j.fgb.2009.07.002.

Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites including isoasperlactone and Asperlactone. A 5298bp polyketide synthase gene "aomsas" has been cloned in Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid sequence of aomsas shows an identity of 40-56% with different methylsalicylic acid synthase genes found in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found to be associated with the biosynthesis of isoasperlactone and Asperlactone. Moreover an aomsas knockout mutant "aoDeltamsas" of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and Asperlactone, but also 6-methylsalicylic acid. The genetically complemented mutant ao+msas restored the biosynthesis of all the missing metabolites. Chemical complementation through the addition of 6-methylsalicylic acid, aspyrone and diepoxide to growing culture of aoDeltamsas mutant revealed that these compounds play intermediate roles in the biosynthesis of Asperlactone and isoasperlactone.

Secondary Metabolites and Bioactivities of Aspergillus ochraceopetaliformis Isolated from Anthurium brownii

ACS Omega 2020 Aug 14;5(33):20991-20999.PMID:32875235DOI:10.1021/acsomega.0c02489.

Five new polyketides, asperochrapyran (1) and asperochralactones A-D (2-5), along with 12 known polyketides (6-17), were obtained from the fungal strain Aspergillus ochraceopetaliformis. Structures of all isolates were elucidated by their spectroscopic parameters. The relative configurations of the new compounds were deduced by the data of coupling constants and NOESY spectra. The absolute configurations were determined by the comparison of experimental and calculated ECD spectra. Moreover, the plausible biosynthesis pathway of major isolates was proposed as well. Anti-inflammatory activity of compounds 5 and 7-17 were evaluated with human neutrophils in response to the stimulation of formyl-methionyl-leucyl phenylalanine (fMLP). Asperlactone (9), aspyrone (13), and (-)-(3R)-mellein (14) exerted superoxide anion inhibition at 30 ± 9%, 29 ± 9%, and 26 ± 12%, respectively, at 10 μM. The capacities of Asperlactone (9), aspilactonol B (10), penicillic acid (12), and (-)-(3R)-mellein (14) in elastase release inhibition were revealed as 25 ± 4%, 38 ± 8%, 25 ± 5%, and 34 ± 9%, respectively, at 10 μM.

A new lactone from mangrove endophytic fungus Aspergillus sp. GXNU-A9

Nat Prod Res 2023 Feb;37(3):417-423.PMID:34937443DOI:10.1080/14786419.2021.1977298.

A new lactone, Asperlactone A (1), and four known lactone derivatives 2-5 were isolated from the mangrove endophytic fungus Aspergillus sp. GXNU-A9. Their structures were elucidated based on high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) datum, extensive nuclear magnetic resonance (NMR) spectroscopic analysis, and comparison with literature data. The structure of 1 was further confirmed by single-crystal X-ray diffraction analysis, and the absolute configuration of 1 was established. Compounds 1-5 were evaluated for their anti-inflammatory activities against nitric oxide (NO) production, and compounds 1-5 showed moderate inhibitory activities with IC50 values ranging from 15.87 to 30.48 µM.

Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities

Pol J Microbiol 2019 Sep;68(3):309-316.PMID:31880876DOI:10.33073/pjm-2019-033.

Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: Asperlactone, emodin, sterigmatocystin, deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds. Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: Asperlactone, emodin, sterigmatocystin, deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds.

Genome and Metabolome MS-Based Mining of a Marine Strain of Aspergillus affinis

J Fungi (Basel) 2021 Dec 18;7(12):1091.PMID:34947073DOI:10.3390/jof7121091.

Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis's strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, l-pyroglutamic acid, lecanoric acid), antifungal (e.g., lpyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while Asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.