AVG-233
目录号 : GC67960AVG-233 是一种口服有效的 RNA 依赖性 RNA 聚合酶 (RdRp) 抑制剂。AVG-233 阻止启动子上的病毒聚合酶复合物的启动。AVG-233 结合位点存在于 L1-1749 片段中。AVG-233 对 RSV 毒株和临床分离株均具有纳摩尔活性 (EC50=0.14-0.31 μM)。AVG-233 可用于呼吸道合胞病毒 (RSV) 研究。
Cas No.:2151937-80-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
AVG-233 is a potent, orally active RNA dependent RNA polymerase (RdRp) inhibitor. AVG-233 prevents initiation of the viral polymerase complex at the promoter. AVG-233 binding site is present in the L1-1749 fragment. AVG-233 has nanomolar activity against both RSV strains and clinical RSV isolates (EC50=0.14-0.31 μM). AVG-233 can be used for research of respiratory syncytial virus (RSV)[1][2].
AVG-233 (1-100 μM) blocks 3´RNA extension elongation but does not interfere with 3´RNA extension by up to three nucleotides after de novo initiation from the promoter or back-priming[1].
AVG-233 (20 μM) reduces virus yield of RSV A2-L19F (EC50=0.31 μM), RSV strain 2-20 (EC50=0.14 μM) and RSV clinical isolate 718 (EC50=0.2 μM) [1].
AVG-233 (1.25-40 μM; 0-300 s) suppresses RNA synthesis by the L1-1749 fragment in a dose-dependent manner with an IC50 value of 13.7 μM. AVG-233 bounds L and the L1-1749 fragment with similar affinities (dissociation constants (KD's) are 38.3 μM and 53.1 μM, respectively)[2].
AVG-233 (50-100 mg/kg; i.g.; once) decreases lung viral load in the RSV mouse model[2].
AVG-233 (2-20 mg/kg; i.v. and p.o.; once; male CD-1 mice) has good orally bioavailable and the maximum plasma concentration about 2 μM[1].
Animal Model: | Female Balb/cJ mice with recRSV-mKate xenograft[2] |
Dosage: | 50 and 100 mg/kg |
Administration: | Oral gavage; once |
Result: | Reduced in lung viral load of 0.89 log10 TCID50 (median tissue culture infectious dose)/mL. |
Animal Model: | Male CD-1 mice (27-29 g)[1] | ||||||||||||||||||||||||
Dosage: | 2 mg/kg (i.v.) and 20 mg/kg (p.o.) | ||||||||||||||||||||||||
Administration: | Intravenous injection and oral administration; once, obtains blood samples at pre-dose and 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 h post-dosing | ||||||||||||||||||||||||
Result: |
|
[1]. Cox RM, et, al. Development of an allosteric inhibitor class blocking RNA elongation by the respiratory syncytial virus polymerase complex. J Biol Chem. 2018 Oct 26;293(43):16761-16777.
[2]. Sourimant J, et, al. Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase. Sci Adv. 2022 Jun 24;8(25):eabo2236.
Cas No. | 2151937-80-1 | SDF | Download SDF |
分子式 | C26H22ClN5O3 | 分子量 | 487.94 |
溶解度 | DMSO : 50 mg/mL (102.47 mM; ultrasonic and warming and heat to 60°C) | 储存条件 | 4°C, away from moisture and light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.0494 mL | 10.2472 mL | 20.4943 mL |
5 mM | 0.4099 mL | 2.0494 mL | 4.0989 mL |
10 mM | 0.2049 mL | 1.0247 mL | 2.0494 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Development of an allosteric inhibitor class blocking RNA elongation by the respiratory syncytial virus polymerase complex
J Biol Chem 2018 Oct 26;293(43):16761-16777.PMID:30206124DOI:PMC6204889
Respiratory syncytial virus (RSV) represents a significant health threat to infants and to elderly or immunocompromised individuals. There are currently no vaccines available to prevent RSV infections, and disease management is largely limited to supportive care, making the identification and development of effective antiviral therapeutics against RSV a priority. To identify effective chemical scaffolds for managing RSV disease, we conducted a high-throughput anti-RSV screen of a 57,000-compound library. We identified a hit compound that specifically blocked activity of the RSV RNA-dependent RNA polymerase (RdRp) complex, initially with moderate low-micromolar potency. Mechanistic characterization in an in vitro RSV RdRp assay indicated that representatives of this compound class block elongation of RSV RNA products after initial extension by up to three nucleotides. Synthetic hit-to-lead exploration yielded an informative 3D quantitative structure-activity relationship (3D-QSAR) model and resulted in analogs with more than 20-fold improved potency and selectivity indices (SIs) of >1,000. However, first-generation leads exhibited limited water solubility and poor metabolic stability. A second optimization strategy informed by the 3D-QSAR model combined with in silico pharmacokinetics (PK) predictions yielded an advanced lead, AVG-233, that demonstrated nanomolar activity against both laboratory-adapted RSV strains and clinical RSV isolates. This anti-RSV activity extended to infection of established cell lines and primary human airway cells. PK profiling in mice revealed 34% oral bioavailability of AVG-233 and sustained high drug levels in the circulation after a single oral dose of 20 mg/kg. This promising first-in-class lead warrants further development as an anti-RSV drug.