Home>>Signaling Pathways>> Cancer Biology>>Avrainvillamide

Avrainvillamide Sale

(Synonyms: (+)-Avrainvillamide; CJ-17,665) 目录号 : GC48511

A fungal metabolite

Avrainvillamide Chemical Structure

Cas No.:269741-97-1

规格 价格 库存 购买数量
250µg
¥2,998.00
现货
1mg
¥10,193.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Avrainvillamide is a fungal metabolite and monomeric form of stephacidin B that has been found in A. ochraceus.1,2 It is active against S. aureus, S. pyogenes, and E. faecalis (MICs = 12.5, 12.5, and 25 µg/ml, respectively).2 Avrainvillamide inhibits the growth of LNCaP, BT-549, T47D, and MALME-3M cancer cells with GI50 values of 0.24, 0.62, 0.21, and 0.41 µM, respectively.1

1.Wulff, J.E., Herzon, S.B., Siegrist, R., et al.Evidence for the rapid conversion of stephacidin B into the electrophilic monomer avrainvillamide in cell cultureJ. Am. Chem. Soc.129(16)4898-4899(2007) 2.Sugie, Y., Hirai, H., Inagaki, T., et al.A new antibiotic CJ-17,665 from Aspergillus ochraceusJ. Antibiot.54(11)911-916(2001)

Chemical Properties

Cas No. 269741-97-1 SDF
别名 (+)-Avrainvillamide; CJ-17,665
Canonical SMILES O=C1[C@@](C=C(C2=CC=C3C(C=CC(C)(C)O3)=C24)C5=[N]4=O)(NC6=O)[C@@](C5(C)C)([H])CC76N1CCC7
分子式 C26H27N3O4 分子量 445.5
溶解度 储存条件 -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2447 mL 11.2233 mL 22.4467 mL
5 mM 0.4489 mL 2.2447 mL 4.4893 mL
10 mM 0.2245 mL 1.1223 mL 2.2447 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Current status and future perspectives in targeted therapy of NPM1-mutated AML

Leukemia 2022 Oct;36(10):2351-2367.PMID:36008542DOI:10.1038/s41375-022-01666-2.

Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30-35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (Avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.

Recent synthetic approaches towards the antiproliferative natural products Avrainvillamide and stephacidin B

Chem Soc Rev 2010 Feb;39(2):591-9.PMID:20111783DOI:10.1039/b900407f.

Due to their strong antiproliferative activity and their unprecedented structural complexity within the class of indole alkaloids, Avrainvillamide and stephacidin B have recently attracted considerable interest from the synthetic community. To date, three distinct approaches towards these molecules have been disclosed and the present tutorial review aims at comparing all three syntheses with a focus on the various strategies and methods employed. Besides, recent progress towards the synthesis of structural analogs and the identification of the biological target of Avrainvillamide will be presented.

The natural product Avrainvillamide binds to the oncoprotein nucleophosmin

J Am Chem Soc 2007 Nov 21;129(46):14444-51.PMID:17958425DOI:10.1021/ja075327f.

Here we present evidence that (+)-avrainvillamide, a naturally occurring alkaloid with antiproliferative effects, binds to the nuclear chaperone nucleophosmin, a proposed oncogenic protein that is overexpressed in many different human tumors. Among other effects, nucleophosmin is known to regulate the tumor suppressor protein p53. A synthetic biotin-avrainvillamide conjugate, nearly equipotent to the natural product in inhibiting the growth of cultured T-47D cells, was used for affinity-isolation of a protein identified as nucleophosmin by MS sequencing and Western-blotting. Affinity-isolation of nucleophosmin was inhibited in the presence of iodoacetamide (10 mM), free (+)-avrainvillamide (100 microM), and a series of closely related structural analogues of (+)-avrainvillamide, the latter with inhibitory effects that appear to correlate with measured growth-inhibitory potencies. Using fluorescence microscopy, a synthetic dansyl-avrainvillamide conjugate was observed to localize within the nucleoli and the cytosol of treated cancer cells. Site-directed mutagenesis of each of the three cysteine residues of a truncated nucleophosmin coexpressed with native nucleophosmin in COS-7 cells revealed that the mutation cys275 --> ala275 effectively and uniquely reduced affinity-isolation of the truncated protein, suggesting that Avrainvillamide targets cys275 of nucleophosmin. Finally, we show that treatment of adhered LNCaP or T-47D cells with (+)-avrainvillamide leads to an increase in cellular p53 concentrations, and that siRNA-promoted depletion of nucleophosmin in a population of HeLa S3 cells leads to increased sensitivity of that population toward apoptotic death upon treatment with (+)-avrainvillamide. Although potentially desirable as lead compounds for the development of novel anticancer therapies, nonpeptidic, synthetic small molecules that bind to nucleophosmin have not been described, prior to this report.

Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 Mediate the cellular localization of nucleophosmin and its AML-associated mutants

ACS Chem Biol 2015 Mar 20;10(3):855-63.PMID:25531824DOI:10.1021/cb500872g.

Nucleophosmin (NPM1) is a multifunctional phosphoprotein localized predominantly within the nucleoli of eukaryotic cells. Mutations within its C-terminal domain are frequently observed in patients with acute myeloid leukemia (AML), are thought to play a key role in the initiation of the disease, and result in aberrant, cytoplasmic localization of the mutant protein. We have previously shown that the electrophilic antiproliferative natural product (+)-avrainvillamide (1) binds to proteins, including nucleophosmin, by S-alkylation of cysteine residues. Here, we report that Avrainvillamide restores nucleolar localization of certain AML-associated mutant forms of NPM1 and provide evidence that this relocalization is mediated by interactions of Avrainvillamide with mutant NPM1 and exportin-1 (Crm1). Immunofluorescence and mass spectrometric experiments employing a series of different NPM1 constructs suggest that a specific interaction between Avrainvillamide and Cys275 of certain NPM1 mutants mediates the relocalization of these proteins to the nucleolus. Avrainvillamide treatment is also shown to inhibit nuclear export of Crm1 cargo proteins, including AML-associated NPM1 mutants. We also observe that Avrainvillamide treatment displaces Thr199-phosphorylated NPM1 from duplicated centrosomes, leads to an accumulation of supernumerary centrosomes, and inhibits dephosphorylation of Thr199-phosphorylated NPM1 by protein phosphatase 1. Avrainvillamide is the first small molecule reported to relocalize specific cytoplasmic AML-associated NPM1 mutants to the nucleolus, providing an important demonstration of principle that small molecule induction of a wild-type NPM1 localization phenotype is feasible in certain human cancer cells.

Toxic indole alkaloids Avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae

Toxicon 2015 Jun 1;99:58-67.PMID:25804991DOI:10.1016/j.toxicon.2015.03.011.

Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids Avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of Avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae.