AZD8154
目录号 : GC65507AZD8154 是一种新型吸入的选择性 PI3Kγδ 双抑制剂,靶向气道炎症性疾病。
Cas No.:2215022-45-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
AZD8154 is a novel inhaled selective PI3Kγδ dual inhibitor targeting airway inflammatory disease.
[1]. Sadiq MW, et al. Characterisation of pharmacokinetics, safety and tolerability in a first-in-human study for AZD8154, a novel inhaled selective PI3Kγδ dual inhibitor targeting airway inflammatory disease. Br J Clin Pharmacol. 2021 Jun 28.
Cas No. | 2215022-45-8 | SDF | Download SDF |
分子式 | C27H29N5O4S2 | 分子量 | 551.68 |
溶解度 | DMSO : 25 mg/mL (45.32 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8126 mL | 9.0632 mL | 18.1265 mL |
5 mM | 0.3625 mL | 1.8126 mL | 3.6253 mL |
10 mM | 0.1813 mL | 0.9063 mL | 1.8126 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Discovery of AZD8154, a Dual PI3Kγδ Inhibitor for the Treatment of Asthma
J Med Chem 2021 Jun 24;64(12):8053-8075.PMID:34080862DOI:10.1021/acs.jmedchem.1c00434.
Starting from our previously described PI3Kγ inhibitors, we describe the exploration of structure-activity relationships that led to the discovery of highly potent dual PI3Kγδ inhibitors. We explored changes in two positions of the molecules, including macrocyclization, but ultimately identified a simpler series with the desired potency profile that had suitable physicochemical properties for inhalation. We were able to demonstrate efficacy in a rat ovalbumin challenge model of allergic asthma and in cells derived from asthmatic patients. The optimized compound, AZD8154, has a long duration of action in the lung and low systemic exposure coupled with high selectivity against off-targets.
Characterisation of pharmacokinetics, safety and tolerability in a first-in-human study for AZD8154, a novel inhaled selective PI3Kγδ dual inhibitor targeting airway inflammatory disease
Br J Clin Pharmacol 2022 Jan;88(1):260-270.PMID:34182611DOI:10.1111/bcp.14956.
Aims: This 3-part, randomised, phase 1 first-in-human study (NCT03436316) investigated the safety, tolerability and pharmacokinetics (PK) of AZD8154, a dual phosphoinositide 3-kinase (PI3K) γδ inhibitor developed as a novel inhaled anti-inflammatory treatment for respiratory disease. Methods: Healthy men, and women of nonchildbearing potential, were enrolled to receive single and multiple ascending inhaled doses of AZD8154 in parts 1 and 3 of the study, respectively, while part 2 characterised the systemic PK after a single intravenous (IV) dose. In part 1, participants received 0.1-7.7 mg AZD8154 in 6 cohorts. In part 2, participants were given 0.15 mg AZD8154 as an IV infusion. In part 3, AZD8154 was given in 3 cohorts of 0.6, 1.8 and 3.1 mg, with a single dose on Day 1 followed by repeated once-daily doses on Days 4-12. Results: In total, 78 volunteers were randomised. All single inhaled, single IV and multiple inhaled doses were shown to be well tolerated without any safety concerns. A population PK model, using nonlinear mixed-effect modelling, was developed to describe the PK of AZD8154. The terminal mean half-life of AZD8154 was 18.0-32.0 hours. The geometric mean of the absolute pulmonary bioavailability of AZD8154 via the inhaled route was 94.1%. Conclusion: AZD8154 demonstrated an acceptable safety profile, with no reports of serious adverse events and no clinically significant drug-associated safety concerns reported in healthy volunteers. AZD8154 demonstrated prolonged lung retention and a half-life supporting once-daily dosing.
Diurnal variation in DLCO and non-standardized study procedures may cause a false positive safety signal in clinical trials
Respir Med 2022 Jan;191:106705.PMID:34879298DOI:10.1016/j.rmed.2021.106705.
Diffusing capacity for carbon monoxide (DLCO) was measured in a phase I single ascending dose study after inhalation of AZD8154 or placebo in healthy participants at baseline (DLCOBaseline) and follow-up (DLCOFollow-up) 6 days after dosing. Initially, DLCOFollow-up timepoint was 2 h earlier than the DLCOBaseline timepoint and clinically significant decreases in DLCOFollow-up (absolute change up to 19% from baseline and DLCO%predicted values less than 70) were observed then. The observed reduction in DLCOFollow-up was confirmed as a false positive finding after alignment of DLCO timings. As a consequence, when DLCO is used in clinical studies, measurements should be strictly standardized in relation to time of the day.