Home>>Natural Products>>BBD (NSC240867)

BBD (NSC240867) Sale

(Synonyms: 4-苄氨基-7-硝基苯并-2-氧杂-1,3-二唑,NSC240867; Benzylamino-NBD) 目录号 : GC30394

BBD (NSC240867)(NSC240867; Benzylamino-NBD) 是一种生化试剂/显色试剂。

BBD (NSC240867) Chemical Structure

Cas No.:18378-20-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥687.00
现货
100mg
¥625.00
现货
500mg
¥1,250.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

BBD(NSC240867; Benzylamino-NBD) is a biochemical reagent/chromogenic reagent.

Chemical Properties

Cas No. 18378-20-6 SDF
别名 4-苄氨基-7-硝基苯并-2-氧杂-1,3-二唑,NSC240867; Benzylamino-NBD
Canonical SMILES O=[N+](C1=CC=C(NCC2=CC=CC=C2)C3=NON=C31)[O-]
分子式 C13H10N4O3 分子量 270.24
溶解度 DMSO : ≥ 34 mg/mL (125.81 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.7004 mL 18.5021 mL 37.0041 mL
5 mM 0.7401 mL 3.7004 mL 7.4008 mL
10 mM 0.37 mL 1.8502 mL 3.7004 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling

Background: Babaodan (BBD), a traditional Chinese medicine, has been shown to have protective effects during liver injury and ameliorate liver disease progression, but little is known about its effect on non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the effects of BBD on obesity-induced NAFLD. Methods: C57BL/6 J mice were fed with normal diet, high fat diet (HFD) or HFD + BBD for 8 weeks. Weights of all mice were recorded every 3 days. At the end of the experiments, the level of livers, kidneys and adipose tissues of each animal was weighed. Blood serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) cholesterol, low density lipoprotein cholesterol (LDL-C), glucose and leptin were detected with appropriate test kits. Haematoxylin-eosin (HE), Masson trichrome and Oil Red O staining of the liver were performed. We applied immunohistochemical analysis to investigate the expression of TNF-α, IL-6 and leptin in liver tissue. The expression of genes related lipid anabolism (SREBP1-c, ACC, SCD-1, LXRα and CD36) and ?-oxidation (CPT-1 and PPARα) in liver and adipose tissues was determined by RT-PCR. The expression of AMPK and p-AMPK was determined by western blot analysis. Results: We found the weight of bodies and tissues (retroperitoneal fat pads, kidneys and livers) of mice fed with HFD + BBD were significantly lower than that of HFD-fed mice. And liver injury induced by HFD was relieved in mice treated with BBD, accompanied with significant reduction were observed in serum ALT/AST activities and alleviated pathological damage. The levels of glucose, TG, TC, HDL-C and LDL-C in the liver or serum were significantly decreased on HFD + BBD group compared with HFD group. Furthermore, BBD treatment reduced the level of TNF-α and IL-6 induced by HFD. The level of leptin in the liver and serum were reduced in mice fed with HFD + BBD than that of HFD-fed mice. Several lipid synthesis genes (SREBP1-c, ACC, SCD-1, LXRα and CD36) were down-regulated and that of ?-oxidation (CPT-1 and PPARα) up-regulated in HFD + BBD group compared with HFD group. In addition, BBD increased the expression of p-AMPK compared with untreated HFD group, which suggested BBD improved the activation of AMPK pathway. Conclusion: In summary, our results indicate that BBD has potential applications in the prevention and treatment of NAFLD, which may be closely related to its effect on lipid metabolism via activation of AMPK signaling.

Bladder and bowel dysfunction in children: An update on the diagnosis and treatment of a common, but underdiagnosed pediatric problem

Bladder and bowel dysfunction (BBD) describes a spectrum of lower urinary symptoms (LUTS) accompanied by fecal elimination issues that manifest primarily by constipation and/or encopresis. This increasingly common entity is a potential cause of significant physical and psychosocial burden for children and families. BBD is commonly associated with vesicoureteral reflux (VUR) and recurrent urinary tract infections (UTIs), which at its extreme may lead to renal scarring and kidney failure. Additionally, BBD is frequently seen in children diagnosed with behavioural and neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Patients with concomitant BBD and neuropsychiatric disorders have less favourable treatment outcomes. Early diagnosis and treatment of BBD are critical to avoid secondary comorbidities that can adversely impact children's kidney and bladder function, and psychosocial well-being. The majority of patients will improve with urotherapy, adequate fluid intake, and constipation treatment. Pharmacological treatment must only be considered if no improvement occurs after intensive adherence to at least six months of urotherapy ± biofeedback and constipation treatment. Anticholinergics remain the mainstay of medical treatment. Selective alpha-blockers appear to be effective for improving bladder emptying in children with non-neurogenic detrusor overactivity (DO), incontinence, recurrent UTIs, and increased post-void residual (PVR) urine volumes. Alpha-1 blockers can also be used in combination with anticholinergics when overactive bladder (OAB) coexists with functional bladder outlet obstruction. Minimally invasive treatment with onabotulinumtoxinA bladder injections, and recently neurostimulation, are promising alternatives for the management of BBD refractory to behavioural and pharmacological treatment. In this review, we discuss clinical presentation, diagnostic approach, and indications for behavioural, pharmacological, and surgical treatment of BBD in children based on a thorough literature review. Expert opinion will be used when scientific evidence is unavailable.

The Chinese medicine babaodan suppresses LPS-induced sepsis by inhibiting NLRP3-mediated inflammasome activation

Ethnopharmacological relevance: BBD is a well-known traditional Chinese medicine widely used in clinic to treat viral hepatitis, cholecystitis, angiocholitis and urinary tract infection. According to traditional medicinal theory, BBD exerts the effects of "clearing and humid heat, activating blood and removing toxicity, curing jaundice and relieving pain", the signs of which are recognized as common symptoms of inflammation during infectious diseases in modern medicine.
Aim of the study: To determine the therapeutic effect of BBD on bacterial endotoxin lipopolysaccharide (LPS) induced sepsis and to investigate the relevant pharmacological and molecular mechanisms of action whereby BBD mitigates inflammation.
Materials and methods: In vivo, a mouse sepsis model was induced by intraperitoneally injection of LPS; the BBD were formulated as drug suspension for intragastric administration. The survival rate, secretion of pro-inflammatory cytokines of IL-1β and TNF-α, and multiple organ injury of lung, liver and spleen were examined. In vitro, peritoneal macrophages (PMs) were stimulated with LPS plus ATP for NLRP3 inflammasome activation; polar gradient extractions of BBD from ultrapure water (sample 1) followed by 70% ethanol (sample 2) were added as interventions. In addition to detect the secretion of IL-1β and TNF-α, the activation of NF-κB, ASC-speck formation and ASC oligomerization were examined by western blotting and immunofluorescent stainning. Eventually, the extractions of BBD were applied for UPLC-QTOF-MS analyses; refer to the identified chemicals, the bioactive compounds in BBD with anti-NLRP3 inflammasome activities were discussed.
Results: BBD improved the survival of sepsis mice accomplished with diminished inflammatory cytokines production and multiple organ injury. Mechanistically, BBD inhibited both the NF-κB pathway and the assembly of NLRP3 complex in PMs. There were 29 chemical compounds identified from sample 1 and 20 from sample 2. Both samples contained bile acids and saponins and sample 2 contained 2 extra chemicals in the category of bile acids.
Conclusions: BBD presents therapeutic role of endotoxin induced sepsis by inhibiting NLRP3-medaited inflammasome activation, which supports its traditional use for the treatment of infectious diseases. The bile acids and saponins are most likely related to the anti-NLRP3 inflammasome activation effect of BBD.

Babao Dan improves neurocognitive function by inhibiting inflammation in clinical minimal hepatic encephalopathy

Background and purpose: Inflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation.
Methods: A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1β, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1β, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1β, IL-6 and TNF-α), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice.
Results: BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1β (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1β, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1β, IL-6 and TNF-α; gene expression of IL-1β, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung.
Conclusion: Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.

Bladder Bowel Dysfunction

Bladder bowel dysfunction (BBD) describes a spectrum of lower urinary tract symptoms associated with bowel complaints. The true incidence of BBD is unknown; however, BBD symptoms represent approximately 40% of pediatric urology consultations. Given the close interaction between the bladder and bowel due to their common innervation as well as associated pelvic floor muscles, patients often present with bowel complaints as well. Increasing awareness of BBD over the past 30 years has led to better diagnostic criteria and treatment methods. In this article, we review the clinical presentation, diagnostic approach, pathophysiology, and treatment options for children with BBD.