Betrixaban maleate
目录号 : GC25137Betrixaban maleate is the maleate salt form of Betrixaban, which is a Factor Xa inhibitor that decreases prothrombinase activity and thrombin generation.
Cas No.:936539-80-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Betrixaban maleate is the maleate salt form of Betrixaban, which is a Factor Xa inhibitor that decreases prothrombinase activity and thrombin generation.
[1] Zhang P, et al. Bioorg Med Chem Lett. 2009, 19(8):2179-85.
Cas No. | 936539-80-9 | SDF | Download SDF |
分子式 | C23H22ClN5O3.C4H4O4 | 分子量 | 567.98 |
溶解度 | DMSO: 100 mg/mL (176.06 mM);Water: 1 mg/mL (1.76 mM);Ethanol: Insoluble | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.7606 mL | 8.8031 mL | 17.6063 mL |
5 mM | 0.3521 mL | 1.7606 mL | 3.5213 mL |
10 mM | 0.1761 mL | 0.8803 mL | 1.7606 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Investigation of Poor Solubility of a Salt-Cocrystal Hydrate: A Case Study of the Common-Ion Effect in Betrixaban, an Anticoagulant Drug
Mol Pharm 2021 Mar 1;18(3):1138-1149.PMID:33528261DOI:10.1021/acs.molpharmaceut.0c01045.
Achieving the desired solubility and dissolution of active pharmaceutical ingredients (APIs) continues to be a big challenge in the pharmaceutical industry. In this regard, multicomponent solids of APIs such as salts and cocrystals have shown significant promise in resolving such solubility/dissolution issues. However, very little is known on how the APIs' solubility or dissolution is affected by the drug to coformer ratio in multicomponent solids. Betrixaban, is an anticoagulant drug approved in 2017 for the prevention of venous thromboembolism. During the alternate solid form development studies of the known Betrixaban maleate, a rare multicomponent solid form, salt-cocrystal hydrate of betrixaban, was discovered and characterized thoroughly by spectroscopic, thermal, and X-ray crystallographic methods. Significantly, the new Betrixaban maleate maleic acid hydrate (1:1:2:1) form has shown lower melting point (80 °C) as compared to its parent salt (197.5 °C). From such a large melting difference (117 °C) between the salt and salt-cocrystal hydrate of API, we anticipated substantially better solubility for the salt-cocrystal hydrate (low enthalpy). Furthermore, the predicted solubility also supported our anticipation. However, the powder dissolution tests at different pH conditions provided contrary results, that is, the salt-cocrystal hydrate showed 10 times lower solubility as compared to its salt. A detailed investigation, considering all the potential factors, revealed that "common-ion effect" could be a critical factor for the low solubility of the salt-cocrystal hydrate in which the API to coformer ratio is 1:3. To the best of our knowledge, this is the first case study on the solubility of pharmaceutical salt-cocrystal hydrates with an emphasis on "common-ion effect" or drug to coformer ratio.
Microwave assisted synthesis of fluorescent hetero atom doped carbon dots for determination of betrixaban with greenness evaluation
RSC Adv 2023 Apr 6;13(16):11044-11054.PMID:37033428DOI:10.1039/d3ra00824j.
A simple, rapid and eco-friendly method for synthesis of nitrogen and sulfur doped carbon dots (N,S-CDs) is described. The method involved one step carbonization assisted by a green microwave irradiation route using available and cheap sources, as sucrose (source for C) and thiourea (source for N and S). The formed aqueous solution of N,S-CDs showed excellent optical and electronic properties with high compatibility and stability. The particles of the prepared dots were spherical with a narrow range of size from 1.7 to 3.7 nm with a quantum yield of 0.20. These dots act as a fluorescent probe, as they showed an intense blue fluorescence at 413 nm after excitation at 330 nm. The N,S-CDs were utilized for determination of the anticoagulant drug, Betrixaban maleate (BTM), based on quenching of their fluorescence upon its gradual addition. The quenching process was found to be through an inner filter effect mechanism. The proposed method showed a good linearity over a concentration range of (1.0-100.0 μM) with LOD and LOQ values of 0.33 μM and 0.99 μM, respectively. All validation parameters met the acceptance criteria according to ICH guidelines. The high specificity and sensitivity of the performed method contributed to further assay of BTM in dosage form and spiked human plasma sample with high percent recoveries and low values of RSD. Interference from co-administered drugs was studied. Finally, the greenness of the proposed method was evaluated adopting a ComplexGapi approach, the excellent green profile has supported its applicability in quality control laboratories.