Home>>Signaling Pathways>> Others>> Estrogen Receptor/ERR>>BHPI

BHPI Sale

目录号 : GC33011

An ERα antagonist

BHPI Chemical Structure

Cas No.:56632-39-4

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,805.00
现货
2mg
¥990.00
现货
5mg
¥1,350.00
现货
10mg
¥2,321.00
现货
50mg
¥8,190.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

BHPI is an antagonist of estrogen receptor α (ERα) that blocks 17β-estradiol-induced proliferation of drug-resistant breast, endometrial, and ovarian cancer cell lines at concentrations ranging from 10 to 1,000 nM.1 It is effective in vivo, driving tumor regression in mice bearing MCF-7 xenografts at a dose of 15 mg/kg daily.1 BHPI specifically inhibits ERα-dependent gene expression and protein synthesis by activating the unfolded protein response in cells.1

1.Andruska, N.D., Zheng, X., Yang, X., et al.Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regressionProc. Natl. Acad. Sci. USA112(15)4737-4742(2015)

Chemical Properties

Cas No. 56632-39-4 SDF
Canonical SMILES O=C1NC2=C(C=CC=C2C)C1(C3=CC=C(O)C=C3)C4=CC=C(O)C=C4
分子式 C21H17NO3 分子量 331.36
溶解度 DMSO : ≥ 150 mg/mL (452.68 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.0179 mL 15.0893 mL 30.1787 mL
5 mM 0.6036 mL 3.0179 mL 6.0357 mL
10 mM 0.3018 mL 1.5089 mL 3.0179 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Computational approaches to identify a novel binding site of BHPI on estrogen receptor alpha

Steroids 2022 Oct;186:109075.PMID:35792153DOI:10.1016/j.steroids.2022.109075.

3,3-bis(4-hydroxyphenyl)-7-methyl-1,3,dihydro-2H-indol-2-one (BHPI) is a biomodulator of Estrogen Receptor alpha (ERα) that targets ERα positive cancer cells by activating the unfolded protein response (UPR). BHPI induces strong and sustained activation of this pathway, eventually resulting in necrotic cell death. While much is known about how BHPI triggers the UPR leading to necrotic cell death, it is not known how BHPI binds to its putative molecular target, ERα. In an effort to identify the binding site of BHPI on ERα, molecular docking studies in AutoDock Vina were utilized. Unexpectedly, BHPI was found to dock more frequently and with significantly better binding affinity to a newly described surface pocket on the ERα ligand-binding domain, compared to the ligand-binding pocket. This work uncovers a novel binding site for small molecules on ERα that is not targeted by classical ligands, such as estrogen and tamoxifen, and may allow for the design of additional anti-cancer drugs that work in distinct ways.

Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression

Proc Natl Acad Sci U S A 2015 Apr 14;112(15):4737-42.PMID:25825714DOI:10.1073/pnas.1403685112.

Recurrent estrogen receptor α (ERα)-positive breast and ovarian cancers are often therapy resistant. Using screening and functional validation, we identified BHPI, a potent noncompetitive small molecule ERα biomodulator that selectively blocks proliferation of drug-resistant ERα-positive breast and ovarian cancer cells. In a mouse xenograft model of breast cancer, BHPI induced rapid and substantial tumor regression. Whereas BHPI potently inhibits nuclear estrogen-ERα-regulated gene expression, BHPI is effective because it elicits sustained ERα-dependent activation of the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), and persistent inhibition of protein synthesis. BHPI distorts a newly described action of estrogen-ERα: mild and transient UPR activation. In contrast, BHPI elicits massive and sustained UPR activation, converting the UPR from protective to toxic. In ERα(+) cancer cells, BHPI rapidly hyperactivates plasma membrane PLCγ, generating inositol 1,4,5-triphosphate (IP3), which opens EnR IP3R calcium channels, rapidly depleting EnR Ca(2+) stores. This leads to activation of all three arms of the UPR. Activation of the PERK arm stimulates phosphorylation of eukaryotic initiation factor 2α (eIF2α), resulting in rapid inhibition of protein synthesis. The cell attempts to restore EnR Ca(2+) levels, but the open EnR IP3R calcium channel leads to an ATP-depleting futile cycle, resulting in activation of the energy sensor AMP-activated protein kinase and phosphorylation of eukaryotic elongation factor 2 (eEF2). eEF2 phosphorylation inhibits protein synthesis at a second site. BHPI's novel mode of action, high potency, and effectiveness in therapy-resistant tumor cells make it an exceptional candidate for further mechanistic and therapeutic exploration.

Antiestrogen Resistant Cell Lines Expressing Estrogen Receptor α Mutations Upregulate the Unfolded Protein Response and are Killed by BHPI

Sci Rep 2016 Oct 7;6:34753.PMID:27713477DOI:10.1038/srep34753.

Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells.

Strong and sustained activation of the anticipatory unfolded protein response induces necrotic cell death

Cell Death Differ 2018 Oct;25(10):1796-1807.PMID:29899383DOI:10.1038/s41418-018-0143-2.

The endoplasmic reticulum stress sensor, the unfolded protein response (UPR), regulates intracellular protein homeostasis. While transient activation of the reactive UPR by unfolded protein is protective, prolonged and sustained activation of the reactive UPR triggers CHOP-mediated apoptosis. In the recently characterized, evolutionarily conserved anticipatory UPR, mitogenic hormones and other effectors pre-activate the UPR; how strong and sustained activation of the anticipatory UPR induces cell death was unknown. To characterize this cell death pathway, we used BHPI, a small molecule that activates the anticipatory UPR through estrogen receptor α (ERα) and induces death of ERα+ cancer cells. We show that sustained activation of the anticipatory UPR by BHPI kills cells by inducing depletion of intracellular ATP, resulting in classical necrosis phenotypes, including plasma membrane disruption and leakage of intracellular contents. Unlike reactive UPR activation, BHPI-induced hyperactivation of the anticipatory UPR does not induce apoptosis or sustained autophagy. BHPI does not induce CHOP protein or PARP cleavage, and two pan-caspase inhibitors, or Bcl2 overexpression, have no effect on BHPI-induced cell death. Moreover, BHPI does not increase expression of autophagy markers, or work through recently identified programmed-necrosis pathways, such as necroptosis. Opening of endoplasmic reticulum IP3R calcium channels stimulates cell swelling, cPLA2 activation, and arachidonic acid release. Notably, cPLA2 activation requires ATP depletion. Importantly, blocking rapid cell swelling or production of arachidonic acid does not prevent necrotic cell death. Rapid cell death is upstream of PERK activation and protein synthesis inhibition, and results from strong and sustained activation of early steps in the anticipatory UPR. Supporting a central role for ATP depletion, reversing ATP depletion blocks rapid cell death, and the onset of necrotic cell death is correlated with ATP depletion. Necrotic cell death initiated by strong and sustained activation of the anticipatory UPR is a newly discovered role of the UPR.

Src couples estrogen receptor to the anticipatory unfolded protein response and regulates cancer cell fate under stress

Biochim Biophys Acta Mol Cell Res 2020 Oct;1867(10):118765.PMID:32502618DOI:10.1016/j.bbamcr.2020.118765.

Accumulation of unfolded protein, or other stresses, activates the classical reactive unfolded protein response (UPR). In the recently characterized anticipatory UPR, receptor-bound estrogen, progesterone and other mitogenic hormones rapidly elicit phosphorylation of phospholipase C γ (PLCγ), activating the anticipatory UPR. How estrogen and progesterone activating their receptors couples to PLCγ phosphorylation and anticipatory UPR activation was unknown. We show that the oncogene c-Src is a rate-limiting regulator whose tyrosine kinase activity links estrogen and progesterone activating their receptors to anticipatory UPR activation. Supporting Src coupling estrogen and progesterone to anticipatory UPR activation, we identified extranuclear complexes of estrogen receptor α (ERα):Src:PLCγ and progesterone receptor:Src:PLCγ. Moreover, Src inhibition protected cancer cells against cell death. To probe Src's role, we used the preclinical ERα biomodulator, BHPI, which kills cancer cells by inducing lethal anticipatory UPR hyperactivation. Notably, Src inhibition blocked BHPI-mediated anticipatory UPR activation and the resulting rapid increase in intracellular calcium. After unbiased long-term selection for BHPI-resistant human breast cancer cells, 4/11 BHPI-resistant T47D clones, and nearly all MCF-7 clones, exhibited reduced levels of normally growth-stimulating Src. Notably, Src overexpression by virus transduction restored sensitivity to BHPI. Furthermore, in wild type cells, several-fold knockdown of Src, but not of ERα, strongly blocked BHPI-mediated UPR activation and subsequent HMGB1 release and necrotic cell death. Thus, Src plays a previously undescribed pivotal role in activation of the tumor-protective anticipatory UPR, thereby increasing the resilience of breast cancer cells. This is a new role for Src and the anticipatory UPR in breast cancer.