BIO8898
目录号 : GC67680BIO8898 是一种有效的 CD40-CD154 抑制剂。BIO8898 抑制可溶性 CD40L 与 CD40-Ig 的结合,IC50 值为 25 µM。BIO8898 抑制 CD40L 诱导的细胞凋亡(Apoptosis)。
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
BIO8898 is a potent CD40-CD154 inhibitor. BIO8898 inhibits soluble CD40L binding to CD40-Ig with an IC50 value of 25 µM. BIO8898 inhibits CD40L-induced Apoptosis[1].
BIO8898 (0-100 µM; 3 days) inhibits CD40L-induced apoptosis in a dose-dependent manner[1].
Apoptosis Analysis[1]
Cell Line: | CD40-TNFR-BHK cells |
Concentration: | 0-100 µM |
Incubation Time: | 3 days |
Result: | Inhibited the ability of 3 ng/ml mycCD40L plus 50 μg/ml cyclohexamide to induce apoptosis. |
[1]. Silvian LF, et al. Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem Biol. 2011 Jun 17;6(6):636-47.
Cas No. | SDF | Download SDF | |
分子式 | C53H64N8O6 | 分子量 | 909.13 |
溶解度 | DMSO : 50 mg/mL (55.00 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.1 mL | 5.4998 mL | 10.9995 mL |
5 mM | 0.22 mL | 1.1 mL | 2.1999 mL |
10 mM | 0.11 mL | 0.55 mL | 1.1 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism
ACS Chem Biol 2011 Jun 17;6(6):636-47.PMID:21417339DOI:10.1021/cb2000346.
BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 μM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.
Exploratory computational assessment of possible binding modes for small molecule inhibitors of the CD40-CD154 co-stimulatory interaction
Pharmazie 2012 May;67(5):374-9.PMID:22764566doi
Protein-protein interactions (PPI) tend to involve extensive, flat, and featureless interfaces that are difficult to disrupt by small molecule binding. However, recently, PPIs are being recognized as increasingly valuable 'druggable' targets. We have identified several small molecule inhibitors of the immunologically relevant CD40-CD154 co-stimulatory interaction that bind to the homotrimeric CD154, a member of the tumor necrosis factor superfamily (TNFSF). Recently, on the basis of the co-crystal structure of CD154 with another small molecule (BIO8898), it has been suggested that these PPIs could be particularly susceptible to small molecule blockade due to a subunit fracture mechanism resulting in a distortion of the trimeric structure. To investigate whether this mechanism can occur with our organic dye-related inhibitors, we performed exploratory computational docking experiments. Possible druggable pockets that can serve as binding sites for small molecule inhibitors were identified with the FFT map algorithm both along the CD154-CD40 binding interface (competitive, orthosteric model) and in the interior core of the CD154 trimer corresponding to the BIO8898 binding site (allosteric model). Docking experiments (using Glide) were performed at these sites using the PDB ID: 3QD6 (CD40-CD154) and 3LKJ (BIO8898-CD154) co-crystal structures, respectively. The docking algorithm was able to better discriminate binders from non-binders at the deeper allosteric site than at the competitive site. Accordingly, an allosteric inhibitory mechanism that involves intercalation between monomeric subunits seems feasible for our small molecules making the constitutively trimeric CD154 a likely druggable target.