Borofalan (10B)
(Synonyms: SPM-011; Steboronine) 目录号 : GC25164Borofalan (10B) (SPM-011; Steboronine), a Ionising radiation emitter, can be used to treat the head and neck cancer.
Cas No.:80994-59-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Borofalan (10B) (SPM-011; Steboronine), a Ionising radiation emitter, can be used to treat the head and neck cancer.
[1] Hirose K, et al. Radiother Oncol. 2021 Feb;155:182-187.
Cas No. | 80994-59-8 | SDF | Download SDF |
别名 | SPM-011; Steboronine | ||
分子式 | C9H12BNO4 | 分子量 | 208.21 |
溶解度 | DMSO: Insoluble;Water: Insoluble;Ethanol: Insoluble | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 4.8028 mL | 24.0142 mL | 48.0284 mL |
5 mM | 0.9606 mL | 4.8028 mL | 9.6057 mL |
10 mM | 0.4803 mL | 2.4014 mL | 4.8028 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Profile analysis of adverse events after boron neutron capture therapy for head and neck cancer: a sub-analysis of the JHN002 study
J Radiat Res 2022 May 18;63(3):393-401.PMID:35388879DOI:10.1093/jrr/rrac012.
The purpose of this study was to outline the course and profile of adverse events specific to boron neutron capture therapy (BNCT) for head and neck cancer. This was a sub-analysis of the phase II JHN002 trial. Patients received 400 mg/kg Borofalan(10B), followed by neutron irradiation. The course of adverse events after BNCT was documented in the JHN002 Look Up study. Patients were grouped into face/front (FF), face/lateral (FL) and neck (N) beam groups according to the point of skin incidence of the epithermal neutron beam axis, and the profile of adverse events dependent on beam incidence position was examined. The courses of adverse events in eight recurrent squamous cell carcinoma (R-SCC) and 13 recurrent or locally advanced non-SCC cases were analyzed. Median interval to complete recovery was 23 days (interquartile range (IQR), 14-48 days) for oral mucositis, 40 days (IQR, 24-56 days) for dermatitis, 58 days (IQR, 53-80 days) for dysgeusia and 156 days (IQR, 82-163 days) for alopecia. In the FF beam group, parotitis (P = 0.007) was less frequent, while oral mucositis (P = 0.032), fatigue (P = 0.002), conjunctivitis (P = 0.001), epistaxis (P = 0.001) and abdominal discomfort (P = 0.029) tended to be more frequent than in the FL and N beam groups. Courses and irradiation site-specific profiles of adverse events in BNCT for head and neck cancer were identified. This profile may be useful for considering interventions to prevent exacerbation of treatment-related adverse events on BNCT.
Boron neutron capture therapy using cyclotron-based epithermal neutron source and Borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): An open-label phase II trial
Radiother Oncol 2021 Feb;155:182-187.PMID:33186684DOI:10.1016/j.radonc.2020.11.001.
Background and purpose: Boron neutron capture therapy (BNCT) can be performed without reactors due to development of cyclotron-based epithermal neutron source (C-BENS), which is optimized for treatment for deeper-seated tumors. The purpose of this study was to evaluate efficacy and safety of cyclotron-based BNCT with Borofalan (10B) for recurrent or locally advanced head and neck cancer. Materials and methods: In this open-label, phase II JHN002 trial of BNCT using C-BENS with Borofalan (10B), patients with recurrent squamous cell carcinoma (R-SCC) or with recurrent/locally advanced non-squamous cell carcinoma (R/LA-nSCC) of the head and neck were intravenously administered 400 mg/kg Borofalan (10B), followed by neutron irradiation. The tumor dose was determined passively as the mucosal maximum dose of 12 Gy-Eq. The primary endpoint was the objective response rate (ORR). Post-trial observational JHN002 Look Up study was planned for evaluating locoregional progression-free survival (LRPFS). Results: Eight R-SCC and 13 R/LA-nSCC patients were enrolled. All R-SCC patients had prior radiotherapy with a median dose of 65.5 Gy (range, 59.4-76.0 Gy). The ORR for all patients was 71%, and complete response/partial response were 50%/25% in R-SCC and 8%/62% in R/LA-nSCC. The 2-year overall survival for R-SCC and R/LA-nSCC were 58% and 100%, respectively. The median LRPFS was 11.5 months for R-SCC. Frequently observed adverse events included alopecia (95%), hyperamylasemia (86%), and nausea (81%). Conclusion: These data suggest that BNCT using C-BENS with Borofalan (10B) is a promising treatment option for patients with R-SCC or R/LA-nSCC of the head and neck.
[The New Generation of Particle Therapy Focused on Boron Element (Boron Neutron Capture Therapy; BNCT) -The World's First Approved BNCT Drug]
Yakugaku Zasshi 2022;142(2):155-164.PMID:35110452DOI:10.1248/yakushi.21-00173-4.
Boron neutron capture therapy (BNCT) is a type of radiation therapy and a new modality for cancer treatment. The radiation used in BNCT is a very low energy neutron called a "thermal neutron", and unlike other radiation, it has no effect on treating cancer on its own. However, when this neutron collides with boron-10 (10B), which is a stable isotope of boron, fission occurs into a high-energy helium nucleus (α-particle) and a lithium nucleus. Moreover, the effect of this fission reaction is limited to a range of about 10 μm, which corresponds to the approximate size of one cell. Therefore, the basic principle of BNCT is "cell-selective" radiation therapy that only damages cells that have taken up 10B present in the area irradiated with thermal neutrons. For the practical application of BNCT, it is indispensable to generate a boron drug capable of selectively accumulating 10B in cancer cells. We have successfully developed a boron drug for BNCT targeting amino acid transporters. We have obtained manufacturing and marketing approval for the world's first boron drug for BNCT, Steboronine® intravenous drip bag 9000 mg/300 mL (March 25, 2020), for indications of locally unresectable recurrent or advanced unresectable head and neck cancer. This uses Borofalan (10B), which is 10B introduced into l-phenylalanine, as a drug substance. This review describes the progress of drug development and future prospects of boron drugs for BNCT.
Development of a 2-(2-Hydroxyphenyl)-1 H-benzimidazole-Based Fluorescence Sensor Targeting Boronic Acids for Versatile Application in Boron Neutron Capture Therapy
Cancers (Basel) 2023 Mar 20;15(6):1862.PMID:36980747DOI:10.3390/cancers15061862.
Boron neutron capture therapy (BNCT) is an attractive approach to treating cancers. Currently, only one 10B-labeled boronoagent (Borofalan, BPA) has been approved for clinical BNCT in Japan, and methods for predicting and measuring BNCT efficacy must be established to support the development of next-generation 10B-boronoagents. Fluorescence sensors targeting boronic acids can achieve this because the amount and localization of 10B in tumor tissues directly determine BNCT efficacy; however, current sensors are nonoptimal given their slow reaction rate and weak fluorescence (quantum yield < 0.1). Herein, we designed and synthesized a novel small molecular-weight fluorescence sensor, BITQ, targeting boronic acids. In vitro qualitative and quantitative properties of BITQ were assessed using a fluorophotometer and a fluorescence microscope together with BPA quantification in blood samples. BITQ exhibited significant quantitative and selective fluorescence after reacting with BPA (post-to-pre-fluorescence ratio = 5.6; quantum yield = 0.53); the fluorescence plateaued within 1 min after BPA mixing, enabling the visualization of intracellular BPA distribution. Furthermore, BITQ quantified the BPA concentration in mouse blood with reliability comparable with that of current methods. This study identifies BITQ as a versatile fluorescence sensor for analyzing boronic acid agents. BITQ will contribute to 10B-boronoagent development and promote research in BNCT.