Ca2+ channel agonist 1
目录号 : GC30977Ca2+channelagonist1是一种N-型钙离子通道(N-typeCa2+channel)激动剂和Cdk2的抑制剂,EC50分别为14.23μM和3.34μM,对运动神经终端功能障碍有潜在疗效。
Cas No.:1402821-24-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Cell experiment: | Briefly, the pipet solution consists of 70 nM Cs2SO4, 60 mM CsCl, 1 mM MgCl2, and 10 mM HEPES at pH 7.4. Cultured cells are bathed in a saline composed of 130 mM choline chloride (ChCl), 10 mM tetraethylammonium chloride (TEA-Cl), 2 mM CaCl2, 1 mM MgCl2, and 10 mM HEPES at pH 7.4. Patch pipettes are fabricated from borosilicate glass, and capacitive currents and passive membrane responses to voltage commands are subtracted. Currents are amplified by an amplifier, filtered at 5 kHz, and digitized at 10 kHz for subsequent analysis. A liquid junction potential of −11.3 mV is subtracted during recordings. To measure effects on calcium channel tail currents, the tail current integral is measured before and after application of a derivative (including Ca2+ channel agonist 1), with the integral of each trace being normalized to its peak. |
References: [1]. Liang M, et al. Synthesis and biological evaluation of a selective N- and p/q-type calcium channel agonist. ACS Med Chem Lett. 2012 Oct 1;3(12):985-990. |
Ca2+ channel agonist 1 is an agonist of N-type Ca2+ channel and an inhibitor of Cdk2, with EC50s of 14.23 μM and 3.34 μM, respectively, and is used as a potential treatment for motor nerve terminal dysfunction.
Ca2+ channel agonist 1 (Compound 13d) is an agonist of N-type Ca2+ channel and an inhibitor of Cdk2, with EC50s of 14.23 μM and 3.34 μM, respectively. Ca2+ channel agonist 1 exhibits a ca. 2-fold increased agonism and a 22-fold decreased cdk2 kinase activity versus the standard, (R)-roscovitine[1].
[1]. Liang M, et al. Synthesis and biological evaluation of a selective N- and p/q-type calcium channel agonist. ACS Med Chem Lett. 2012 Oct 1;3(12):985-990.
Cas No. | 1402821-24-2 | SDF | |
Canonical SMILES | CC[C@@H](NC1=NC(NCC2=CC=CC=C2)=C3C(N(CCC)C=N3)=N1)CO | ||
分子式 | C19H26N6O | 分子量 | 354.45 |
溶解度 | DMSO : 50 mg/mL (141.06 mM);Water : < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.8213 mL | 14.1064 mL | 28.2127 mL |
5 mM | 0.5643 mL | 2.8213 mL | 5.6425 mL |
10 mM | 0.2821 mL | 1.4106 mL | 2.8213 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Interaction of the Lys(3614)-Asn(3643) calmodulin-binding domain with the Cys(4114)-Asn(4142) region of the type 1 ryanodine receptor is involved in the mechanism of Ca2+/agonist-induced channel activation
In the present study we show that the interaction of the CaM (calmodulin)-binding domain (Lys(3614)-Asn(3643)) with the Cys(4114)-Asn(4142) region (a region included in the CaM-like domain) serves as an intrinsic regulator of the RyR1 (type-1 ryanodine receptor). We tested the effects of antibodies raised against the two putative key regions of RyR1 [anti-(Lys(3614)-Asn(3643)) and anti-(Cys(4114)-Asn(4142)) antibodies]. Both antibodies produced significant inhibition of [3H]ryanodine-binding activity of RyR1. This suggests that the inter-domain interaction between the two domains, Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142), activates the channel, and that the binding of antibody to either side of the interacting domain pair interfered with the formation of a 'channel-activation link' between the two regions. In order to spectroscopically monitor the mode of interaction of these domains, the site of inter-domain interaction was fluorescently labelled with MCA [(7-methoxycoumarin-4-yl)acetyl] in a site-directed manner. The accessibility of the bound MCA to a large molecular mass fluorescence quencher, BSA-QSY (namely, the size of a gap between the interacting domains) decreased with an increase of [Ca2+] in a range of 0.03-2.0 microM, as determined by Stern-Volmer fluorescence quenching analysis. The Ca2+-dependent decrease in the quencher accessibility was more pronounced in the presence of 150 microM 4-CmC (4-chlorometacresol), and was reversed by 1 mM Mg2+ (a well-known inhibitor of Ca2+/agonist-induced channel activation). These results suggest that the Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142) regions of RyR1 interact with each other in a Ca2+- and agonist-dependent manner, and this serves as a mechanism of Ca2+- and agonist-dependent activation of the RyR1 Ca2+ channel.
Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Cav 1.1 by Dihydropyridine Compounds*
1,4-Dihydropyridines (DHP), the most commonly used antihypertensives, function by inhibiting the L-type voltage-gated Ca2+ (Cav ) channels. DHP compounds exhibit chirality-specific antagonistic or agonistic effects. The structure of rabbit Cav 1.1 bound to an achiral drug nifedipine reveals the general binding mode for DHP drugs, but the molecular basis for chiral specificity remained elusive. Herein, we report five cryo-EM structures of nanodisc-embedded Cav 1.1 in the presence of the bestselling drug amlodipine, a DHP antagonist (R)-(+)-Bay K8644, and a titration of its agonistic enantiomer (S)-(-)-Bay K8644 at resolutions of 2.9-3.4 ?. The amlodipine-bound structure reveals the molecular basis for the high efficacy of the drug. All structures with the addition of the Bay K8644 enantiomers exhibit similar inactivated conformations, suggesting that (S)-(-)-Bay K8644, when acting as an agonist, is insufficient to lock the activated state of the channel for a prolonged duration.
Key roles of Phe1112 and Ser1115 in the pore-forming IIIS5-S6 linker of L-type Ca2+ channel alpha1C subunit (CaV 1.2) in binding of dihydropyridines and action of Ca2+ channel agonists
Voltage-dependent L-type Ca2+ channels are modulated by the binding of Ca2+ channel antagonists and agonists to the pore-forming alpha1c subunit (CaV 1.2). We recently identified Ser1115 in IIIS5-S6 linker of alpha1C subunit as a critical determinant of the action of 1,4-dihydropyridine agonists. In this study, we applied alanine-scanning mutational analysis in IIIS5-S6 linker of rat brain alpha1C subunit (rbCII) to illustrate the role of pore-forming IIIS5-S6 linker in the action of Ca2+ channel modulators. Ca2+ channel currents through wild-type (rbCII) or mutated alpha1C subunits, transiently expressed in BHK6 cells with beta1a and alpha2/delta subunits, were analyzed. The replacement of Phe1112 by Ala (F1112A) significantly impaired the sensitivity to Ca2+ channel agonists (S)-(-)-Bay k 8644 and FPL-64176, and modestly to 1,4-dihydropyridine (DHP) antagonists. The low sensitivity of F1112A and S1115A to DHP antagonists was consistent with the reduced binding affinity for [3H](+)PN200-110. The replacement of Phe1112 by Tyr, but not by Ala, restored the long openings produced by FPL-64176, thus indicating the critical role of aromatic ring of Phe1112 in the Ca2+ channel agonist action. Interestingly, double-mutant Ca2+ channel (F1112A/S1115A) failed to discriminate between Ca2+ channel agonist (S)-(-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl)-3-pyridine carboxylic acid methyl ester (Bay k 8644) and antagonist (R)-(+)-Bay k 8644 and was blocked by the two enantiomers in an identical manner. These results indicate that both Phe1112 and Ser1115 in linker IIIS5-S6 are required for the action of Ca2+ channel agonists. A model of the DHP receptor is proposed to visualize possible interactions of Phe1112, Ser1115, and other DHP-sensing residues with a typical DHP ligand nifedipine.
Downregulation of the Ca2+-activated K+ channel KCa3.1 in mouse preosteoblast cells treated with vitamin D receptor agonist
The maturity of osteoblasts by proliferation and differentiation in preosteoblasts is essential for maintaining bone homeostasis. The beneficial effects of vitamin D on bone homeostasis in mammals have been demonstrated experimentally and clinically. However, the direct actions of vitamin D on preosteoblasts remain to be fully elucidated. In this study, we found that the functional activity of intermediate-conductance Ca2+-activated K+ channels (KCa3.1) positively regulated cell proliferation in MC3T3-E1 cells derived from mouse preosteoblasts by enhancing intracellular Ca2+ signaling. We examined the effects of treatment with vitamin D receptor (VDR) agonist on the expression and activity of KCa3.1 by real-time PCR examination, Western blotting, Ca2+ imaging, and patch clamp analyses in mouse MC3T3-E1 cells. Following the downregulation of KCa3.1 transcriptional modulators such as Fra-1 and HDAC2, KCa3.1 activity was suppressed in MC3T3-E1 cells treated with VDR agonists. Furthermore, application of the KCa3.1 activator DCEBIO attenuated the VDR agonist-evoked suppression of cell proliferation rate. These findings suggest that a decrease in KCa3.1 activity is involved in the suppression of cell proliferation rate in VDR agonist-treated preosteoblasts. Therefore, KCa3.1 plays an important role in bone formation by promoting osteoblastic proliferation under physiological conditions.
Ca2+ influx via the L-type Ca2+ channel during tail current and above current reversal potential in ferret ventricular myocytes
1. Current through L-type Ca2+ channels (ICa) was measured electrophysiologically at the same time as Ca2+ influx was measured by trapping entering Ca2+ with a high concentration of indo-1 (> 1 mM) in ferret ventricular myocytes. 2. Na+-free conditions prevented Na+-Ca2+ exchange and K+ currents were blocked by Cs+ and TEA. Thapsigargin (5 microM) prevented Ca2+ uptake and release by the sarcoplasmic reticulum. ICa was pre-activated by brief pulses to +120 mV (the equilibrium potential for Ca2+, ECa), followed by steps to different membrane potentials (Em, -80 to +100 mV), in some cases in the presence of the Ca2+ channel agonist FPL-64176. 3. Integrated ICa ( 82 ICa) was linearly related to the change in the concentration of Ca2+ bound to indo-1, which was assessed by the fluorescence difference signal DeltaFd (Fd = F500 - F400). This created an internal calibration of DeltaFd as a measure of Ca2+ influx. 4. The DeltaFd/ 82 ICadt relationship was virtually unchanged at all measurable inward ICa (at Em from -80 to +50 mV). This indicates that the fractional current carried by Ca2+ and channel selectivity are unchanged over this Em range, and also that the selectivity for Ca2+ is very high. 5. Ca2+ influx was readily detected by DeltaFd beyond the ICa reversal potential (+65 to +100 mV) and was not abolished until Em was +120 mV (i.e. ECa). This is explained by the fact that inward Ca2+ flux at the ICa reversal potential is exactly balanced by outward Cs+ current through the Ca2+ channels and can be described by classic Goldman flux analysis with a Ca2+/Cs+ selectivity of the order of 5000. 6. This result also emphasizes that net Ca2+ influx via Ca2+ channels occurs over a voltage range where the net channel current is outward.