Home>>Signaling Pathways>> Others>> Others>>Camobucol (AGIX 4207)

Camobucol (AGIX 4207) Sale

(Synonyms: AGIX 4207) 目录号 : GC31811

Camobucol (AGIX 4207) (AGIX 4207) 是一种具有抗风湿特性的口服活性酚类抗氧化剂和抗炎化合物。

Camobucol (AGIX 4207) Chemical Structure

Cas No.:216167-92-9

规格 价格 库存 购买数量
1mg
¥1,785.00
现货
5mg
¥3,570.00
现货
10mg
¥6,069.00
现货
20mg
¥10,710.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Camobucol is an orally active, phenolic antioxidant and anti-inflammatory compound with antirheumatic properties.

Camobucol exhibits potent antioxidant activity toward lipid peroxides in vitro and displays enhanced cellular uptake. Camobucol selectively inhibits tumor necrosis factor (TNF)-α-inducible levels of the redox-sensitive genes, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, with less inhibition of E-selectin, and no effect on intracellular adhesion molecule-1 expression in endothelial cells. In addition, Camobucol inhibits cytokine-induced levels of monocyte chemoattractant protein-1, interleukin (IL)-6, and IL-8 from endothelial cells and human fibroblast-like synoviocytes as well as lipopolysaccharide-induced release of TNF-α, IL-1β, and IL-6 from human peripheral blood mononuclear cells. Camobucol does not inhibit TNF-α-induced nuclear translocation of nuclear factor of the κ-enhancer in B cells (NF-κB), suggesting that the mechanism of action is independent of this redox-sensitive transcription factor[1].

[1]. Kunsch C, et al. AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid], a novel antioxidant and anti-inflammatory compound: cellular and biochemical characterization of antioxidant activity and inhibition of redox-sensitive inflammatory gene expression. J Pharmacol Exp Ther. 2005 May;313(2):492-501. Epub 2005 Feb 8.

Chemical Properties

Cas No. 216167-92-9 SDF
别名 AGIX 4207
Canonical SMILES CC(C)(C)C1=CC(SC(C)(C)SC2=CC(C(C)(C)C)=C(OCC(O)=O)C(C(C)(C)C)=C2)=CC(C(C)(C)C)=C1O
分子式 C33H50O4S2 分子量 574.88
溶解度 DMSO : 100 mg/mL (173.95 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7395 mL 8.6975 mL 17.3949 mL
5 mM 0.3479 mL 1.7395 mL 3.479 mL
10 mM 0.1739 mL 0.8697 mL 1.7395 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid], a novel antioxidant and anti-inflammatory compound: cellular and biochemical characterization of antioxidant activity and inhibition of redox-sensitive inflammatory gene expression

The pathogenesis of chronic inflammatory diseases, including rheumatoid arthritis, is regulated, at least in part, by modulation of oxidation-reduction (redox) homeostasis and the expression of redox-sensitive inflammatory genes including adhesion molecules, chemokines, and cytokines. AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid] is a novel, orally active, phenolic antioxidant and anti-inflammatory compound with antirheumatic properties. To elucidate its anti-inflammatory mechanisms, we evaluated AGIX-4207 for a variety of cellular, biochemical, and molecular properties. AGIX-4207 exhibited potent antioxidant activity toward lipid peroxides in vitro and displayed enhanced cellular uptake relative to a structurally related drug, probucol. This resulted in potent inhibition of cellular levels of reactive oxygen species in multiple cell types. AGIX-4207 selectively inhibited tumor necrosis factor (TNF)-alpha-inducible levels of the redox-sensitive genes, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, with less inhibition of E-selectin, and no effect on intracellular adhesion molecule-1 expression in endothelial cells. In addition, AGIX-4207 inhibited cytokine-induced levels of monocyte chemoattractant protein-1, interleukin (IL)-6, and IL-8 from endothelial cells and human fibroblast-like synoviocytes as well as lipopolysaccharide-induced release of TNF-alpha, IL-1beta, and IL-6 from human peripheral blood mononuclear cells. AGIX-4207 did not inhibit TNF-alpha-induced nuclear translocation of nuclear factor of the kappa-enhancer in B cells (NF-kappaB), suggesting that the mechanism of action is independent of this redox-sensitive transcription factor. Taken together, these results provide a mechanistic framework for understanding the anti-inflammatory and antirheumatic activity of AGIX-4207 and provide further support for the view that inhibition of redox-sensitive inflammatory gene expression is an attractive approach for the treatment of chronic inflammatory diseases.

Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases

Vascular cell adhesion molecule-1 (VCAM-1) mediates recruitment of leukocytes to endothelial cells and is implicated in many inflammatory conditions. Since part of the signal transduction pathway that regulates the activation of VCAM-1 expression is redox-sensitive, compounds with antioxidant properties may have inhibitory effects on VCAM-1 expression. Novel phenolic compounds have been designed and synthesized starting from probucol (1). Many of these compounds demonstrated potent inhibitory effects on cytokine-induced VCAM-1 expression and displayed potent antioxidant effects in vitro. Some of these derivatives (4o, 4p, 4w, and 4x) inhibited lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and IL-6 from human peripheral blood mononuclear cells (hPBMCs) in a concentration-dependent manner in vitro and showed antiinflammatory effects in an animal model. Compounds 4ad and 4ae are currently in clinical trials for the treatment of rheumatoid arthritis (RA) and prevention of chronic organ transplant rejection, respectively.